Nat. Hist. Res., Vol. 9 No. 1: 1 —13, March 2006

MIS15-16 Pollen Assemblages from 23 m lioka Section,
NE Boso Peninsula, Central Japan: Validity Check for Choshi
Core Pollen Signals

Masaaki Okuda”, Hiroomi Nakazato?, Hiroyuki Sato® and Hiroko Okazaki”

' Natural History Museum and Institute, Chiba
955-2 Aoba-cho, Chuo-ku, Chiba 260-8682, Japan
E-mail: okuda@chiba-muse.or.jp
2 National Institute for Rural Engineering, Tsukuba 305-8609, Japan
3) Sizuoka Seiko-Gakuin Junior and Senior High School. Sizuoka 422-8021, Japan

Abstract This paper presents Middle Pleistocene pollen assemblages from the Tioka section (IOK) covering
the upper Yokone and lower Kurahashi Formations of the Inubo Group (equivalent of the Kazusa Group), for
validity check of the contemporary Choshi-core pollen record. The lioka section, located on the western side
of the Tioka upland, NE Boso Peninsula, is defined by the marker tephras Khda (Ks15) at the top and Yk12
(Ch2) near the bottom. This section is time equivalent to the 107-127 m (MIS15-16) of the 250 m Choshi core
(CHOSHI-1), which was recovered from the eastern side of the lioka upland penetrating MIS11-25. Results
of pollen analyses for the Tioka section indicate boreal conifer forest of Picea, Betula, Artemisia, ferns, etc around
Yk12, followed by a massive phase of temperate conifer forest of Cryptomeria, T-C-C and Sciadopitys around
Kh3b-c, as well as a small return of boreal forest around Kh4a. This reproduces the corresponding CHOSHI-1
pollen stratigraphy, supporting the continuity of the Choshi core below Ks15. The IOK result also shows that
the CHOSHI-1 pollen signals have a regional extent with more nearshore environments, supporting the

terrestrial-palaeoclimate proxy use of the alternation between temperate and boreal conifers.
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tephrochronology.

The Middle Pleistocene has been the focus for
palaeoclimatological studies because of the extreme
glaciations and interglaciation in MIS16, 12 and 11
(Droxler er al., 2003) (Fig. 1), climate revolution from
41-kyr obliquity cycle to 100-kyr eccentricity cycle
around 700 ka (Shackleton et al., 1990) and millennial-
scale variations detected in some Middle Pleistocene
records (Oppo et al, 1998 McManus et al, 1999;
Tzedakis er al, 2003). The Boso Peninsula (35° N;
140°E) is one of the appropriate research areas to the
paleoclimatological scopes, because thick Quaternary
deposits (the Kazusa-Shimosa Groups) permit high-
resolution analyses for obtaining fossil pollen data for
the reconstruction of terrestrial palaeoclimate condi-
tions. The Pleistocene of the Boso Peninsula also re-
ceives a well-established chronostratigraphy based on
tephro-, bio-, isotope- and sequence-stratigraphical
studies (Kanto Quaternary Research Group, 1980;
Machida et al, 1980; Okada and Niitsuma, 1989; Ito,
1994; Masuda, 1997; Pickering et al, 1999; Nakazato,
2001). In contrast, many pollen sequences of the Mid-
dle Pleistocene lack independent timescales where

Benthic foraminiferae 5'°0

pollen data have been consumed as chronological
scales (Wijmstra and Groenhart, 1983; Mommersteerg
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Fig. 1. Global climate cooling during the past 5 My, with the
Middle Pleistocene containing climate extremes of MIS11, 12
and 16 (data from benthic foraminifer ¢ *O from ODP Site
849; Mix et al., 1995).
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et al, 1995; Tzedakis et al, 1997; Okuda et al.,
2002a).

Prior palynological studies in the Boso Peninsula
have been restricted to the last decades. A few pollen
records (Onishi, 1969; Chisaka and Kase, 1979; Kase,
2001; Okuda er al, 2002b) were unfortunately in low
resolution and/or fragmentary due to changeable
sandy lithofacies. Hence the pollen-climate relation re-
mained uncertain in the Boso Peninsula particularly
prior to MIS5. Although preliminary pollen analyses

2001,

(e.g., Kase, 2001) detected coniferous pollen assem-

blages including Picea, their climate inference re-

mained obscure because such conifer pollen
abundance can simply result from long-distance trans-
port under hemipelagic environments (see Yamanoi,
1992, 1993).

A breakthrough for such palynological limitations
was brought from the CHOSHI-1 pollen profile from
the Choshi core (data published in Okuda er al, 2006).

The Choshi core was originally a 255 m-long muddy

corelog drilled in 1998 by the Ocean Research Insti-
tute, University of Tokyo from the marginal slope of
the Kazusa forearc basin. Since the core site has been
free from violent turbidity currents, the corelog re-
lithology  consisting  of
polliniferous clay/silt except the top 19 m (El-Masry,
2002). Geologically, the Choshi core penetrated the
upper part of the Inubo Group, which is equivalent to
the Kazusa Group to part of the Shimosa Group. Our
CHOSHI-1 anchored by
chronology and 6O stratigraphy,

ceived homogeneous

pollen record, tephro-
provided quasi-
continuous palynostratigraphy of 400-780 ka with five
sets of alternation between temperate conifers
(mainly Cryptomeria) and boreal conifers (mainly
Picea) (Fig. 2a), which were comparable to MIS11-19
glacial/interglacial cycles.

Concerning the CHOSHI-1 record, two questions re-
mained critical: (1) temporal and (2) spatial extents of
the pollen variations, which hindered converts from

the pollen to palaeoclimate (see Okuda et al, 2006).
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Fig. 2. (a) CHOSHI-1 pollen record (data from Okuda er al, 2006) for the 19-169 m (above the B-M) interval of the 255 m-long
Choshi core (El-Masry, 2002), recovered from the Inubo Group in the NE Boso Peninsula, central Japan. Temperate conifers de-
note Cryptomeria, T-C-C (Taxaceae-Cephalotaxaceae-Cupressaceae) and Sciadopitys. Boreal conifers denote Picea, Abies, Pinus

(mainly P. subgen. Haploxylon) and Tsuga (mainly

T. diversifolia). Warm-temperate elements denote Castanopsis and Quercus
subgen. Cyclobalanopsis. AP and NAP denote arboreal and non-arboreal pollen, respectively. (b)
(redrawn from Miyoshi er al, 1999) from the 250 m T-bed of the 1400 m core (T

Lake Biwa pollen record
akemura, 1990). (¢) External 6”0 stacks dur-

ing the past 800 ky (compilation after Berger and Wefer, 2003). PFS and BFS denote stacks of planktonic and benthic
foraminifer 60 records. ImbM denotes the SPECMAP stack (Imbrie er al, 1984) with age adjusted to the algorithm operating

on Milankovitch input (Mila 1000) (Berger et al.. 1996).
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The first question has been given an answer by refer-
ring to the Lake Biwa pollen record (Miyoshi et al.,
1999) from the top 250 m of the 1400 m core
(Takemura, 1990; Meyers et al., 1993) (Fig. 2b). That
is the standard pollen profile for the past 430,000 years
(MIS1-12) with dozens anchor points based on
tephrostratigraphy from the parallel Takashima-oki
core (Yoshikawa and Kuwae, 2001). The integration
of the Lake Biwa and CHOSHI-1 pollen records
showed the consistency with external 6*O stacks (Fig.
2¢) throughout the Brunhes chron. In contrast, the
second question (spatial extents of the CHOSHI-1 pol-
len variations) has remained unsolved due to the lack
of time-equivalent pollen records. This problem was
not negligible because conifer-rich assemblages only in
hemipelagic environments could be the result of long-
distance transport. For example, many offshore pollen
records were dominated by Pinus (Shimakura, 1970;
Suc, 1984; Yamanoi, 1992), which is easily wind-blown
from distant uplands and disturbs palaeoclimate sig-
nals (Chaloner and Muir, 1968; Traverse, 1988).

There was also the third geological problem that im-
plied a sediment discontinuity around 105-110 m of the
Choshi core. The discontinuity was initially suggested
by assuming the extension of the Nagahama
unconformity, which lay below the Ks15 tephra denud-
ing the Chonan, Kakinokidai and Kokumoto Forma-
tions in the western Boso Peninsula (Machida er al,
1980) (Fig. 3a). In the east, this unconformity pinched
out into the muds of the Kurahashi Formation, but it
was difficult to deny the possibility of invisible hiatuses
in the Choshi In the Inubo Group, the
stratigraphic distance between tephras Khda (Ksl5)
and Yk12 (Ch2) is anomalously small in the eastern
side of the Tioka upland (Fig. 3b), and Sakai (1990)
drew his local tephras Kh2 and Kh3 as if missing in the
eastern side (see Nakazato et al.. 2003). This logically
permitted a possible sediment lack in the Choshi core
stratigraphy.

In order to address these issues, this paper provides
a pollen profile from the Tioka section (I0K), located in
the opposite side of the Tioka upland (see Fig. 4). This
23 m section is defined by tephra Khda (Ks15) at the
top, with Kh3c (Ks17) at 11.5 m, Kh3b (Ks18) at 13 m
and Yk12 (Ch2) at 195 m in descending order, being
time-equivalent to the 107-127 m of the Choshi-core
stratigraphy (Okuda et al.. 2006). When Sakai's (1990)
interpretation was right, the pollen spectra from lioka
would not agree with the corresponding CHOSHI-1
pollen stratigraphy, but would provide some extra sig-
nals that was not recorded in the Choshi core. Simi-
larly, if the CHOSHI-1 record contained abundant

area.

35%°45'N

Fig. 3. (a) Schematic geological section of the Kazusa
Group (E-W direction), with the Nagahama unconformity
shown below tephra Ks15 (Machida et al. 1980). (b)
Marker tephra distribution in the Inubo Group, NE Boso
Peninsula, Japan (simplified after Sakai, 1990). The
tephrostratigraphy between Khd4 and Yk12 has been
questioned by Nakazato et al. (2003).

exotic pollen as a consequence of the hemipelagic loca-
tion, the IOK pollen signals, formed at a more
nearshore site, would be significantly different from
the Choshi core pollen signals.

Geological Setting of the Inubo Group, with
Lithostratigraphy of the Iioka Section and the
Choshi Core

The Inubo Group was initially termed for the Plio-
Pleistocene (500-600 m thick) of marine origin in the
northeasternmost Boso Peninsula (Ozaki, 1958) (Fig.
5a). These strata have received few geological studies
(Matoba, 1967: Niitsuma, 1970; Nishida, 1980) com-
pared with intense studies on the Kazusa Group in the
central Boso Peninsula. Recently, a comprehensive
work by Sakai (1990) redefined the lithostratigraphy
of the Choshi area based on litho- tephro-, magneto-
and radiolarian stratigraphies, subdividing the Inubo
Group into the Naarai, Kasuga, Obama, Yokone,
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Fig. 4. (a) Locality of the Choshi area. (b) Geological map for the Inubo Group
(after Sakai, 1990). with localities of the Choshi-core drilling site (El-Masry, 2002
Okuda et al., 2006) and the lioka section (this study). (c) Schematic geological sec-
tion of the Inubo Group with representative marker tephras. An open rectangle
along the corelog denotes the time-equivalent interval of the Choshi core (107-127

marker tephras Kh4a at the top
(0m) and Yk12 near the bottom
(195m), spanning the upper
Yokone and lower Kurahashi For-
mations (see Fig. 5). Two more
marker tephras Kh3b and Kh3c
are interbedded at 13 m and 115
m from the top, respectively.
These correlate the lioka section
with the 107-127 m of the Choshi
core. Tephrostratigraphically, the
Kh4a, Kh3c, Kh3b, Yk12 are coun-
terparts of Ks15, Ksl17, Ks18 and
Ch2 of the Kazusa Group based
on refractive indices and heavy-
mineral compositions (Nakazato
et al, 2003). Lithologically, the
Tioka section consists of olive-grey
coloured clay/silt. The sediments
are very massive, except for fine-
grained sands forming thin, ob-
scure bands above Kh3c. Pumice
fractions and small (< lcm) mol-
lusk shells are scattered above
and below Kh3b-c, though they

m) to the lioka section (IOK).

Kurahashi and Toyosato Formations from the base up-
wards. Today the Inubo Group is time equivalent to
the Kazusa (and basal part of Shimosa) Groups based
on abundant marker tephras (Na2-5, Kgl-4, Obl and 3-
7. Yk1-12, Kh1-9 and Ty1-3), spanning from the early
Middle Pleistocene (>04 Ma) to the late Pliocene
(<34 Ma) (Sakai, 1990; Takayama er al., 1995) (Fig.
5b). The Brunhes-Matuyama (B-M) palaeomagnetic
boundary has been recognised in the midst of the
Yokone Formation, as well as the Olduvai subchron
placed in the upper part of the Kasuga Formation.
Lithologically, the Inubo Group consists of hemipelagic
mudstone unlike the turbidite-rich Kazusa Group. Par-
ticularly the Yokone Formation consists of fine-
grained materials deposited in offshore environments,
whereas the Kurahashi Formation becomes sandy in
the upper part, as the consequence of progradation
near the top of the Inubo Group. The uppermost
Toyosato Formation consists of massive sand / silt
(Sakai, 1990).

The Tioka section, located in Iioka-cho, Asahi-shi,
Chiba prefecture (35°43'0-10"N; 140° 42'30-50"E; 5-10m
asl) (see Fig. 4), consists of roadside outcrops of 23m
in the total height. This section is bracketed by

are far from abundant through
the section.

The Choshi core (255m long altogether) was recov-
ered from morito-cho, Choshi-shi, Chiba prefecture
(35°46'44"N; 140°43'53"E). This core received multi-
proxy analyses including bulk density, sand contents,
electric resistivity, total organic carbon (TOC), mag-
netic susceptibility (MS), carbon/oxygen isotopes
("0, 6"“C), foraminifer and diatom abundance, etc
(El-Masry, 2002). The Brunhes-Matuyama (B-M)
palaeomagnetic boundary was placed in 162-169 m
centred in 168 m, and the whole corelog penetrated
MIS11-25 (ca. 395-925 ka) (El-Masry, 2002; Kameo et
al, 2006). Lithologically, the core consisted of olive-
grey coloured silt/clay of the Kurahashi, Yokone and
Obama Formations, except the top 19 m with abun-
dant coarse-sands/gravels of the Toyosato and Katori
Formations. In order to escape the Metasequoia flora
surviving in the Early Pleistocene, the upper portion of
the Choshi core above the B-M (i.e., 19-169 m) was
analysed for the CHOSHI-1 pollen record (Okuda er
al., 2006). The lithology resembled that of the Iioka
section except for abundant granule/ pebble-sized
pumice scattered. Tephras Kh4a, Kh3b and Yk12
were observed at 107.5 m, 111.6 m and 123.8 m of the
Choshi core, respectively (El-Masry, 2002).
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Fig. 5. The Neogene-Quaternary of the Boso Peninsula.
(a) Regional geological map of Chiba prefecture, showing
the Inubo Group in the northeast. (b) Schematic colum-
nar section for the Neogene-Quaternary of the Boso Pen-
insula (compiled after Editorial Committee of Kanto, 1986;
Sakai, 1990). A filled rectangle denotes the time range of
the Tioka section (I0K).

Materials and Methods

The field survey was performed in 2003 March with
tephra researches conducted by the second and the
third authors. Sediment samples for pollen analysis
were collected from 45 horizons by the first author.

The sampling interval was generally 50 cm and each
sample was 1-2 cm® in size. The samples were pre-
treated and analysed in the pollen laboratory at the
Natural History Museum and Institute, Chiba.

The pretreatment method for pollen analyses fol-
lowed the standard KOH-acetolysis method (Moore et
al, 1991) with inert plastic microspheres added for ab-
solute counts (Ogden II1, 1985). The sediment samples
were milled and bathed in a 10% HCI solution over-
night to remove any calcium carbonate. After excess
HCI was rinsed off, the samples were boiled in a 10%
KOH solution for 10 minutes to remove humic acids.
The resulting suspension was cleaned by repeated
centrifugation and decanting to remove clay-sized par-
ticles. Fossil pollen was extracted from heavier parti-
cles by heavy liquid flotation using ZnCl. solution. The
samples were finally acetolysed and mounted in glyc-
erol solution. More than 200 grains of arboreal pollen
(AP) except Alnus were counted for each sample,
forming the sum for percentage calculations. Percent-
ages for Alnus itself as well as non-arboreal pollen
(NAP) and pteridophyte spores were based on the
same sum (AP minus Alnus) to enable comparisons
with the CHOSHI-1 and Lake Biwa pollen records.

Results

Results of the pollen analysis for the lioka section
were shown in Figure 6. Averages of 5000-8000 grain
s/cm’ of AP minus Alnus were yielded from the
analysed samples (with the maximum of 29,000 grain
s/cm®), which were substantially high for marine envi-
ronments. Pinus did not become dominant throughout
the analysed section. The dominant taxa were Cryp-
tomeria, Taxaceae-Cephalotaxaceae-Cupressaceae (T-
C-C) and Picea, associated with Abies, Tsuga, Pinus,
Sciadopitys, etc. The Pinus and the Tsuga contained a lot
of P. subgen. Haploxylon and T. diversifolia pollen-types,
which are today the elements of boreal coniferous for-
est in northern Japan (Nakanishi et al, 1983). The
Fagus belongs to F. crenata based on the pollen mor-
phology, but palaeobotanically could contain extinct
beeches of F. japonica, F. hayatae and/or F. microcarpa
when prior works for the Osaka Group (Tai, 1973) are
considered. Carya and Liquidambar, which have been
extincted from Japan (Nasu, 1980), sporadically oc-
curred throughout the sequence. They logically origi-
nated from some reworked materials. Lagerstroemia
was absent throughout the section.

Three local pollen zones 10K1-3 were recognized
based on the variations among the dominant taxa
(Cryptomeria, T-C-C, Picea, Artemisia, monolete ferns,
ete) as well as the pollen (and spore) concentrations.
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1. IOK1 (15-22.8 m)

Zone IOK1 was characterised by abundant Picea,
Betula, Artemisia and ferns (monolete and trilete
types). Pinus, Tsuga, Quercus subgen. Lepidobalanus,
Poaceae, Tubuliflorae and Umbelliferae were main as-
sociates. Pollen concentrations remained low in this
zone (3000-6000 grains/cm’ for AP minus Alnus). sug-
gesting lower forest density. The reconstructed vege-
tation of zone IOKl was boreal (or subarctic)
coniferous forest with Artemisia and/or pteridophytes
around the spruce forest.

2. I0K2 (4-15 m)

Zone I0K2 was characterised by dominant
Crvptomeria and T-C-C replacing the boreal elements.
The regular abundance of Sciadopitys was also charac-
teristic, differentiating the IOK2 from the IOKI.
Higher pollen concentrations (reaching 15,000-30,000
grains/cm’ for AP minus Alnus) indicated higher for-
est density, coupled with the simultaneous decreases
in open-space elements (ferns, Artemisia, Tubuliflorae,
Poaceae, etc). The reconstructed vegetation of zone
I0K2 was dense forest of temperate conifers such as
Cryptomeria, T-C-C and Sciadopitys. This zone had ir-
regular peaks of Picea and Pinus in 11-12 m as well as
Betula, Carpinus, Quercus, Fagus, etc in 7-9 m, possibly
being subdivided under higher resolution.

3. IOK3 (0-4 m)

Zone IOK3 was a less distinct pollen zone than the
I10K1-2, but was recognised by a return of Picea re-
placing Cryptomeria. The Pinus (probably P. Haplo-
xylon), herbs (Artemisia, Poaceae, etc) and ferns were
also main associates. A feature of this zone was the
persistence of Sciadopitys, so the temperate forest was
not completely replaced by the returning boreal forest.
The reconstructed vegetation of zone IOK3 was bo-
real and temperate mixed conifer forest. The lower
pollen concentrations (<10,000 grains/cm” for AP
minus Alnus) with returns of herbs and pteridophytes
indicated reduction of forest density.

Discussion

1. Terrestrial-environmental signals in the IOK and
CHOSHI-1 records

The significance of the IOK record is the consis-
tency with the corresponding interval of the CHOSHI-
1 record (Fig. 7). Around tephra Yk12, lower ratios of
Cryptomeria/ Picea, temperate/boreal conifers and AP
/ NAP-plus-spores are observed in the IOK and
CHOSHI-1. Around tephra Kh3b, increases in the Cry-
ptomeria/ Picea, temperate/boreal conifers and AP/
NAP-plus-spores are shared by the two profiles. Com-
parisons with multiproxy data from the Choshi core
(6"0, 6“C, magnetic susceptibility. planktonic
foraminifera) (see Fig. 7) indicates glacial environ-
ments to zone IOK1, whereas an interglacial environ-

(a) T Pollen | (b) f Polien | Multiproxy —————
© © o 3 R o - o~
T 0 H 1 Q o] —_ o~ > —
ok o8 g8 L5 g CHOSHL & 88 w8 T ® £ ESET
_ £ = 8= o 8F R s & 8%F » 38 8§ & & 5% 5t
02 g 3 =g S St £ o Zg s £ o5 0§ LB 2939
L ) « [ %) a <g £ = a 8 P (%) Q < g Q S Lo 58 *E,
o = I~ L 3 2 450 2 a o & 2 S 2 yowlm BTG 29 2
[} ] T £ + 3 T @ - ® £ + 3E~E&E <& g@o T2 TS
© = g 5 < @ 9 a . E o < ® €0 w_ w_ Og =25 2q
& L s I rSo gO° ° s S a rSa g°0 2 2 g° G
= < 3 g o< E T o £ 8 g o&< E s = = g2 o
g s g <2 o 3 5 5 > 5 <<Z a %o sl & RZ
& = 2 < 8 & s & Pt < g o=
] S ] —_— 24 1.2 0 20 40
Kh ~—T T T Khl’"‘l"‘ﬁ"l’ﬂ T ™ T T T T
04 4 > .
43— — = -
— P === I
= = 8 s
5] — = 4a —)
r—— ,.‘:_29 e ]
j—— =
j——— .
104 f— g
j— 1. JKn i
—
15 —
—_—
(m) —_—r 3 (m) T T ~—r— —_r —
40 80 40 70 100 10 X10 40 80 40 40 70100 3 x10° -12 0 010 80100
% % grainsfom’ % % % grains/cm3 %o % %

Fig. 7. Comparison between selected pollen spectra from the lioka section (I0K) and the spectra from time-equivalent interval

of the Choshi core (CHOSHI-1)

(Okuda er al. 2006). Temperate conifers denote Crypromeria.

T-C-C

(Taxaceae-

Cephalotaxaceac-Cupressaceae) and Sciadopitys. Boreal conifers denote Picea, Abies, Pinus (mainly P. subgen. Haploxylon) and
Tsuga (mainly T. diversifolia). Multiproxy records (30, 6 “C. MS, foram composition. etc) are from El-Masry (2002).
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ment is given to zone IOK2. Pollen concentrations
show a similar pattern between the two profiles. Con-
cerning the concentration levels, the IOK record
shows 3-10 times higher pollen/spore concentrations
than the Choshi core, which is consistent with the
nearshore location of the Tioka site. The averaged con-
centrations of 5000-20,000 grains/cm® are significantly
high compared with the prior Sakata record (Okuda et
al., 2002b), which originated from a lagoonal environ-
ment of MIS9 interglacial but the pollen concentration
hardly reached 1000 grains/cm’. It deserves attentions
that the IOK record shares the same signals with the
Choshi core. This supports that the CHOSHI-1
palynoflora represents terrestrial
rather than reflecting noise-like exotic pollen trans-
ported from distant areas.

environments

2. Orbital-scale continuity of the Choshi core below
Ks15

The consistency between the IOK and CHOSHI-1
pollen records denies differential sedimentation in the
east and west sides of the Tioka upland. This certainly
attenuates the sediment lack hypothesis for the Choshi
core in at least orbital scales (10-100 kyr in this con-
text). The problematic tephras Kh2 and Kh3 shown
by Sakai (1990) may possibly result from double rec-
ognition of Khl, which may appear repeatedly along
the study route due to undulating bedding planes (see
Nakazato er al., 2003). We note that the present IOK
result support the sediment continuity of the Choshi
core between tephras Kh4 and Yk12. In other words,
no hidden stadial phase exists below Kh4 (i.e, Ks15),
unlike the assumption of hiatus (El-Masry, 2002) that
invisible but comparable the
unconformity of the Kazusa Group.

is to Nagahama

3. Palaeoclimate proxy use of the temperate/ boreal
conifer alternation

Figure 7 also shows a relation between
palaeoclimate (glacial/interglacial cycles) and pollen
variations between temperate conifers (mainly
Cryptomeria) and boreal conifers (mainly Picea). The
60 has been known as a proxy of the 100-kyr glacio-
eustasy cycle in the Kazusa Group (Pickering et al.
1999), and the foraminifer composition showed abun-
dant cold-water species N. pachyderma during the zone
I0K1 (El-Masry, 2002) (Fig. 7). These give stadial fea-
tures to the boreal conifers, while giving interstadial
features to the temperature conifers. At present, geo-
graphical isolation between Picea sp. and Cryptomeria
Jjaponica is apparent in surface pollen spectra (Fig. 8).

In this latitude-altitude diagram, Picea pollen is

restricted to Hokkaido and the mountains of central
Honshu, whereas C. japonica is common in the temper-
ate zones of Honshu, Shikoku and Kyushu islands. The
border of the two major pollen types was recognised
around 7-8C in mean annual temperature (Okuda er
al,, 2006), which is close to the Kuromatsunai line in
southwestern Hokkaido. It is also true that the distri-
bution of natural C. japonica forest is constrained by
high rainfalls (>1800mm/y) (Tsukada, 1982, 1986).
The abundant the Pleistocene
palynoflora would also reflect increased rainfall during
interglacials, which has widely been observed in the
monsoon regions (An et al., 1991; Tada et al, 1999;
Zhou et al, 2001). In the Late Pleistocene, the
temperate-conifer phase in MIS5 and the boreal-
conifer phase in MIS2-4 have been common in numer-
ous pollen records from Japanese archipelago
(Yasuda, 1982; Tsukada, 1983; Tsuji er al, 1984;
Heusser, 1990; Oshima et al. 1997; Takahara and
Kitagawa, 2000; Yasuda, 2002; Miyake et al., 2005; Iriya
et al., 2005).

Cryptomeria  in

4. Time ranges of the lioka section

Based on the above geochemical and ecological evi-
dence, the temperate-conifer phase of zone IOK2 cor-
relates with MIS 15, whereas the boreal-conifer phase
of zone IOK1 correlates with MIS16. This means that
the Tioka section covers at least 600-630 ka (calibration
target from Bassinot er al., 1994). The boreal and tem-
perate mixed phase of zone IOK3 may represent
MIS14 glacial but may reflect MIS15b/d stadials, ob-
scuring the upper limit of the time range. This chrono-
logical problem concerns the eruption age of tephra
Kh5a (at 103.5 m of the Choshi core, see Fig. 7), which
is equivalent to widespread marker tephra Ks11 (Kb-
Ks or Sakura) found in many parts of Japan
(Yoshikawa and Mitamura, 1999; Shirai, 2001; Suzuki,
2003; Nagahashi er al, 2004), requiring further re-
searches.

Conclusions

The Tioka (IOK) pollen record, which spanned at least
600-630 ka (MIS15-16) based on the tephrostrati-
graphy bracketed by Kh4a (Ks15) and Yk12 (Ch2),
reproduced the corresponding interval of the Choshi
core pollen profile. Since the IOK record was deposited
in the nearshore environment in the western side of
the Tioka upland, the data reproduction supported the
regional extent of the CHOSHI-1 pollen signals, as well
as a relation between the pollen and terrestrial cli-
mate. The IOK results also showed the evidence
against the possible hiatus below Kh4a (Ksl5) in the
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Choshi core, strengthening the sediment continuity of
the Choshi corelog particularly in 105-125 m. The
palaeoclimate proxy use of the temperate/boreal coni-
fer alternation was also supported with the aid of
multiproxy records ( 6*0, N. pachyderma, etc) as well
as the comparison with surface pollen spectra. These
means that a quasi-continuous MIS11-19 biostra-
tigraphy emerges from the Choshi core, and that the
combination with Lake Biwa record provides the stan-
dard reference section for the past 780 ka.
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