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Abstract Recent advances in electronics and computing technology are leading to n巴W
applications in biology , ecology and conservation; one particular research area, computer-aided 
taxonomy , is only becoming a reality because of these advances. Computer-aided taxonomy 
encompasses automatic species identification , computer-based identification keys and taxoｭ
nomic methods such as cladistics. Whilst there is a reasonable research effort being put into the 
developm巴nt of computer identification keys for 巴conomically important groups, there is 
relatively little research on automated identification of species. Applications involving autoｭ
mated identification are diverse and include insect counting and sorting, pest monitoring and 
biodiversity assessment. Accordingly, this paper concentrates on automated identification 
research and describes recent and ongoing work at Hull University and elsewher巴 on two 
topics-bioacoustic identification of insects and birds, and image processing applications for 
discrimination of quarantine species of fungi and insects. The paper is based on the Open 
Lecture given at the Natural History Museum and Institute, Chiba, Japan on March 2 1, 1998 
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In recent years, the growth in the electronｭ

ic and computing industries has been reｭ

markabl巴， mainly due to the development of 

high speed , low cost microprocessors and 
memory. The advent of computers operating 

at 300 MHz or higher, with hundred's of megｭ
abytes of memory have led to new applicaｭ

tions unheard of only a few years ago. In 

biology and ecology , there ar巴 now many 

possibilities for the development of research 

tools, commercial instrumentation and softｭ

ware packages for biological analysis. It is 

also becoming increasingly apparent that 

these new applications can only be properly 

designed if biologists have a modest knowlｭ

edge of engineering and vice versa. Indeed , it 
is the author's belief that the only way foト

ward is to increase multidisciplinary tcachｭ

ing and research in universities and colleges. 

It is from the multidisciplinary background 
of the members of the Control and Intelligent 

Systems Engineering Research Group , a 
merger of the Control Research Group and 

the Environmental Electronics Research 

Group, at Hull University that the research 
projects described in this paper have arisen. 

The paper describes a number of projects 

that fall under the heading of computerｭ

aided taxonomy (CAT) , a new term which 

was f�st def�ed at the inaugural meeting of 

the BioNET International Group for Comｭ

puter-aided Taxonomy (BIGCAT) in Cardiff, 
Wales in J uly 1997 (Chesmore, 1998b). CA T 

is def�ed as the application of any computer 

or computer technique for taxonomic purｭ

poses. 

CAT can be divided into 3 groups: autoｭ

mated identif�ation systems, identif�ation 
k巴ys and softwar巴 techniques for taxonomy 

such as cladistics. It has great potential for 
aiding species identifìcation, especially durｭ
ing biodiversity studies where there may be 

many species. The quality of such surveys is 

dependent on the accuracy of the id巴ntif�

cation process which may be difficult and 

time-consuming. Edwards and Morse (1995) 

give a detai!ed account of the development of 
computer-aided identif�ation mainly in key-
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based systems. It is beyond the scope of this 
paper to discuss key systems which are genｭ

erally regarded to be well developed (see for 
example, Dallwitz et al., 1998 and Pankhurst, 
1991). Instead, the paper concentrates on 
more recent work involving automated and 
semi-automated species identification. More 

detailed discussions of CA T can be found in 

(Chesmore, 1997a, b; Chesmore and Morse, 
1997). 

Automated Species Identification 

Before considering automated identificaｭ
tion applications it is important to make a . 

distinction between “ identification" as deｭ
scribed here and the term used for classifiｭ
cation which is in wide use in taxonomy. In 

the applications described in this paper,“iden­
tification" is used in the context of associat-
ing an unknown signal (acoustic signals, 
images, etc.) with one in a pre-defined set of 
classes (species or groups). The identification 
system is trained with signals from each 

class prior to use. There is an ongoing debate 

Table 1. Examples of species identif�ation systems. 

Species/Group Sensor(s) 

as to whether “ identification", "recognition" 
or “classification" should be used; it is the 
author's experience from meetings such as 
the Systematics Association Biennial Conferｭ
ence (Chesmore and Morse, 1997) and Fifth 
Workshop of the ESF Network in Systematic 
Biology on New Directions in Systematics 
(Chesmore, 1997b) that “ identification" is the 
preferred term in Europe and that “classifica­
tion" is to be restricted to taxonomy even 
though it is used commonly in engineering 
applications. 

The concept of automated identification of 
species has received relatively little attention 
until recently; Table 1 shows some examples 

of current and past research areas. The techｭ
niques employed generally fall into 2 broad 
categories-acoustics and image processing, 
with a few miscellaneous methods involving 
flow cytometry for algae and phytoplankton 
(Balfoort et αl. ， 1992; Boddy et al., 1994), and 
radar for aerial insect migration (Smith et al., 
1993). 

Species identification by electronic means 

Classif�ation Method(s) 

Fish species Active acoustics (sonar) PDF, cluster analysis, ANN 

Orthoptera 

Amphibia 

Birds 

Mosquito 

Flying insects 

Lepidoptera 

Phytoplankton 

Hymenoptera 

Leafーロuners

Fungal spores 

Plants, weed species 

N anofossils 

Pollen 

Passive acoustics 

Passive acoustics 

Passive acoustics 

Passive acoustics 

Radar 

Infra-red Doppler 

Monochrome & colour image 

Flow cytometry 

Monochrome image 

Monochrome image 

Monochrome & colour image 

Monochrome image 

Monochrome & colour image 

Scanning electron microscope 

Scanning electron microscope 

TDSC+ANN 

FFT + machine learning 

FFT, LPC, TDSC+ ANN 

Wingbeat frequency 

Scatter 

Wing beat frequency 

Colour discrimination 

ANN 

Linear discrimination, ANN 

Wing venation; PCA 

ANN 

ANN, shape discrimination 

FFT. colour discrimination 

General image processing 

Texture analysis 

Notes: ANN, artif�ial neural network; PDF, probability density function; TDSC, time domain signal 
coding; FFT, fast Fourier transform; LPC, linear predictive coding. 
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can be consid巴red to be an application of 

general pattern recognition in which an unｭ

known (specimen) is placed into one of a 
number of possible classes depending on feaｭ

tures extracted from measurements on the 

species. Pattern recognition has many appliｭ

cations ranging from handwriting recogniｭ

tion to speech analysis and identif�ation of 

faults in machinery (condition monitoring). 
Automated species identif�ation is very simｭ

ilar to many of these applications. Two main 

levels of automation can be identif�d-parｭ

tially and fully automated as described 

below: 
a) Fully Automated. Complete identif�aｭ

tion without user interaction; this requires 

highly reliable identif�ation with a very 

low (ideally zero) probability of misｭ

classif�ation. 
b) Semi-automated. This category is perｭ

haps more realistic than a) as it allows 

prior sorting into higher taxonomic categoｭ

ries and presents the user with data for 

further manual identif�ation if required. It 
is a relaxation of fully automated identif�

cation and is therefore more likely to be 

feasible in the short term. 

It is anticipated that semi-automated sysｭ

tems will be the most viable as they allow the 

user to perform or verify the f�al identif�aｭ

tion. This is considered to be mor巴 accepta­

ble in the short term as there is a tendency 

for humans to mistrust computers or conｭ

sider them as a threat which may result in a 

possible impediment to CA T. It is therefore 

expected that semi-automated systems will 

play an important role in validation of techｭ

niques and in obtaining general acceptance 

of automation. In addition, such systems 

must not be seen as replacements for trained 

taxonomists but as identif�ation aids. 

Applications of automated identif�ation 

systems are divers巴 and include insect 

counting , biodiversity assessment，巴cological

monitoring and detection/identif�ation of 

pests. Each area is discussed in more detail 
below: 
a) Insect Counting. Little research has 
been carried out in this potentially imporｭ

tant area. Gonzales (1986) developed a 

pilot image processing system for identifyｭ

ing insects from agricultural surveys in an 
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巴妊ort to speed up the often time consumｭ

ing sorting process. It has been suggested 

that systems of this nature could aid conｭ

siderably in sorting from large catches 

even if th巴 sorting process only identif�s 

to order or genus. Such pre-sorting could 

reduce the identif�ation time by an order 

of magnitude. This also links to bioｭ

diversity assessment and pest monitoring 

(see below). 
b) Biodiversity Assessment. Systematics 
Agenda 2000 (1994) has stated that bioｭ

diversity inventories must be carried out 

for as many habitats as possible. However, 
increasing destruction of many habitats 

has led to the necessity for developing 

more rapid biodiversity assessment in an 

attempt to identify habitats and areas rich 

in biodiversity. Riede (1993) suggested 

that since many rainforest species produce 

sounds, it may be possible to use acoustic 
analysis for monitoring fauna. Riede used 

Orthoptera for more rapid biodiversity 

estimation in a tropical lowland forest in 

Ecuador and Oba (1 994, 1995) used bird 
song as a measure of the “ natural sound 
diversity" in Japan. Until very recently , it 

has only been possible to identify species 

manually from recordings which is both 

costly and time consuming; the developｭ

ment of automated identif�ation systems 

will speed up the process and lead to conｭ

tinuous real-time monitoring. 

c) Ecological Monitoring. Potential appliｭ

cations for ecological monitoring are diｭ

verse and include recording the occurrence 

of call types and correlating with enｭ

vironmental conditions, long term continuｭ

ous monitoring and determination of bird 

species for species-specif� bird strike 

avoidance (bird scarers) in airports. It is 
also theoretically possible to identify and 

monitor individuals in populations of som巴

taxa (e.g. birds). 
d) Pest Monitoring. Many animal pests, 

particularly insects, can be detected by 

their sound production. In the USA , 

Shuman et al. (1993) used acoustics for 
detecting beetle larvae in rice grains. 
Hagstrum et al. (1990) used similar techｭ

niques for monitoring of Rhizoperthα dom­

inica (Coleoptera: Bostrichidae) in wheat 
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kernels. It is theoretically possible to 
detect and, more importantly, identify 
many different insect and animal pests in a 
variety of agricultural and horticultural 
environments although very littie work 
has been done to date. 

Identification Using Bioacoustics 

Many insect, bird and animal species proｭ
duce sounds either deliberately for communiｭ
cations or as a byproduct of movement 
(ftying, eating, walking, etc.). In many cases, 
such sounds can be used to detect the presｭ
ence of animals or, if sufficiently distinctive, 
identify species. The majority of acoustic 
applications are passive, i.e. they rely on calls 
and sounds produced by animals. The majorｭ
ity of research to date has been on the identiｭ
fication of birds in general (McBraith and 
Card, 1995; Anderson et al., 1996), nocturnal 
migrant birds (Mills, 1995), frogs and other 
amphibia (Taylor et al., 1996) and insects 
(Chesmore et al., 1998; Chesmore and Nellenｭ
bach, 1997). Applications involving detecｭ
tion rather than identification are less comｭ
plex and have mainly been for stored grain 
insect pests (Shuman et al., 1993; Shuman et 
al., 1997; Weaver et al., 1997; Anderson et al., 
1996). 
An alternative to passive listening is active 
sonar which relies on scatter from transｭ
mitted sound, often ultrasound. Underwater 
sonar applications are currently restricted to 
identification of fish species in shoals (Simｭ
monds et al., 1996; Scalabrin et al., 1996) and 
zooplankton classification (Martin et al., 
1996). The latter research project does not 
identify to species but determines approxiｭ
mate groupings according to acoustic specｭ
tral reftection characteristics. 

Development of the Intelligent Bioacoustic 
Identification System (IBIS) 
IBIS is a multipurpose testbed for autoｭ
mated bioacoustic identification applications. 
It is based on a technique known as time 
encoded speech (TES) which was developed 
in the 1970's by King (King and Gosling, 
1978) as a purely time domain approach to 
the compression of speech for digital transｭ
mission. It has subsequently been used in a 
number of applications including acoustic 

Amplitud�' 

Epoch. D= I O. S=2 

20 

10 

Duratﾎon = 10 sampl�'s 
Sampl出

ー 10

~20 

Fig. 1. Definition of a TDSC epoch. 

condition monitoring of machinery (Lucking 
et al., 1994) and heart sound analysis and 
defect identification (Swarbrick and Chesｭ
more,1998). TES is now termed time domain 
signal coding (TDSC) by the author (Chesｭ
more, 1998c) since the term is more general 
than the original application. TDSC characｭ
terises any bandlimited signal by its shape 
between successive real zeros (termed an 
epoch); generally, this shape is taken between 
actual zero-crossings. Each epoch is deｭ
scribed in terms of its duration in samples (D) 
and shape (S) usually taken as the number of 
minima or signal energy as indicated in Fig. 
1 which shows a 10 sample epoch with 2 
minima (D= 10, S=2). The number of possiｭ
ble D-S combinations (symbols) is termed the 
natural alphabet which can often be nonｭ
linearly mapped onto a smaller symbol set to 
give signal compression. In the original 
speech application, the coded symbols were 
transmitted and used to regenerate the 
speech signal at the receiver thus providing 
digital speech transmission at substantially 
reduced data rates. 
TDSC can be described as the concatenaｭ
tion of a signal's D-S symbols, i.e. it produces 
a sequential stream of symbols and one analｭ
ysis method is to examine the occurrence of 
pairs of symbols over time to give a histoｭ
gram, A, which describes the number or proｭ
portion of symbols i and j occurring in sucｭ
cession, i.e. the number of times i is followed 
by j by a lag L. A 2・dimensional histogram, 
the A-matrix, can be formed , expressed mathｭ
ematically as: 

1 m=N 

au= I7I.T.... T ¥ L: Xjj(n) 
ー (N-L) 1I=7:+1"'j 

where L=lag 
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Xij(n)=l if t(n)=i and t(n-L)=j 

(0 otherwise) 
t(n)=n1h TES symbo1 

This 白 xed size histogram with timeｭ

invariant dimensions is the feature set used 
for classification purposes. The entry at posiｭ
tion (i , j) represents the number (p巴rcentage)
of occurrences of the TDSC sym bo1 pair i and 
j where j is de1ayed re1ative to the first (in 
epochs). In this app1ication , a 1ag of 1 epoch 
is used; mu1tip1e 1ags may a1so be emp10yed 
giving rise to mu1ti-dimensiona1 matrices. 
The A-matrix is independent of any gain facｭ
tors if the input signa1 has no dc component 

and is therefore insensitive to re1ative enｭ

ergies of di汀erent s巴gments of the signal. 
Each sound (call, syllab1e, etc.) is transｭ
formed into a sing1e A-matrix which forms 

the basic feature for pattern classification 
using an artificia1 neura1 network (ANN). 

ANNs are now wide1y used in many classifiｭ
cation and identification prob1ems as they 
can be trained , are good at handling fuzzy 
and disparate data and are ab1e to perform 

non-1inear discrimination. There are many 

forms of ANN which can be divided into 
supervised (requires training) and unｭ
supervised classification (no training). The 
majority of classification methods used in 

IBIS are based on mu1ti1ayer perceptrons 
(MLP) using backpropagation for training. 

More recent1y , se1f-organising f巴atures maps 
have been investigated with some success 

All software has been d巴ve10ped using 
Matlab, a generic mathematica1 programｭ
ming 1anguage optimised for matrix manipu-

1ation. Matlab has been chosen for two r巴a­
sons-it is simp1e to use and a wide range of 
too1boxes are avai1ab1e , in this case the 
neura1 networks too1box. Mat1ab runs on 
any 486 computer (or better) with at 1east 4 

Mbytes of RAM and a hard disc, and is capaｭ
b1e of running on portab1e PCs. The sounds 

are samp1ed at 44 kHz , 16-bits per samp1e 
using a program called Go1dwave V3.03 via 

the line input of a Soundb1aster card. 

Bioacoustic Identification Examples 

To date, 2 different test groups have been 
se1ected-25 species British Orthoptera and 

Table 2. List of British Orthoptera species for IBIS tests. 

ID Code Latin Name English Name 

OROl Meconema thalassinum Oak Bush-cricket 
OR02 Tettigonia viridissima Great Green Bush-cricket 
OR03 Decticus verrucivorus 1へrart-biter 
OR04 Pholidoptera griseoaptera Dark Bush.cricket 
OR05 Platycleis albo.ρunctata Grey Bush-cricket 
OR06 Metrioptera brachyptera Bog Bush-cricket 
OR07 Metrioptera ro也S邑lii Roesel's Bush-cricket 
OR08 Conocephalus discolor Long-winged Cone-h巴ad
OR09 Conocephalus doγsalis Short-winged Cone-head 
ORI0 Acheta domesticus I-I ous巴町crick巴1

ORll Gryllus campestris Field.cricket 
OR12 Nemobius sylvestris Wood-cricket 
OR13 Gryllotalρa gryllotalpa Mole-crick巴t

ORl4 Stethophyma grossum Large Marsh Grasshopper 
OR15 Stenobothrus lineatus Stripe-winged Grasshopper 
OR16 Stenobothrus stigmaticus Lesser Mottled Grasshopper 
OR17 Omocestus rufiρes Woodland Grasshopper 
OR18 Omocestus viridulus Common Green Grasshopper 
OR19 Chorthippus brunneus Field Grasshopper 
OR20 Chorthippus vagans I-Ieath Grasshopper 
OR21 Choγthippus paγallelus Meadow Grasshopper 
OR22 Chorthippus albomarginatus L巴sser Marsh Grasshopp巴r
OR23 Euchorthippus pulvinatus Jers巴 y Grasshopper 
OR24 GomoPhocerippus γufus Rufous Grasshopper 
OR25 Myrmeleotettix maculatus 孔10ttl巴d Grasshopper 
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10 species of bird occurring in J apan. Resul ts 
for each test group will be considered sepaｭ

rately. 

1. Results for British Orthoptera 

Table 2 lists the 25 species used in 1 set of 

tests. The sounds were derived from a 
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Fig.2. Gryllus campestris (OR11): A, Time domain waveform; B, Average scaled A-matrix. 
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widely available audio cassette (Burton and 
Ragge, 1987) available as an accompaniment 
to The Grasshoppers and Allied lnsects of 
Great Britain and lreland (Marshall and Haes, 
1988) and digitised as previously described. 
TDSC symbols for up to 2 seconds of sound 
for each species. The subsequent A-matrices 

were used to train a single layer Perceptron 

consisting of 784 inputs (1 for each location 
in the A-matrix) and 25 output neurons, 1 for 
each species. Figs. 2, 3 and 4 show time 
plots and A-matrices for 3 species-Gryllus 
campestris (ORll), Chorthippus albomarginaｭ
tus (OR22) and Meconema thalassinum 
(OR01). The single layer Perceptron was 
developed by Rosenblatt in the 1960's (Roｭ

senblatt, 1962) and is a competitive learning 
network that performs n-dimensional disｭ
criminant analysis. The results suggest that 
TES is a good pre-processor providing wide 
separation of sounds which would have simｭ
ilar spectra. This is evident when the examｭ
ple A-matrices in Fig. 2B, 3B and 4B are 
examined. The differences between species 
are obvious, especially for M. thalassinum 
which has predominantly low frequencies 
compared with the other 2 species. 

Once trained, the system was tested with 
new sounds; Table 3 shows identification reｭ
sults with various levels of added noise to 
simulate response to poorer conditions. Each 
entry is an average of 1000 normally disｭ

tributed random A-matrices (zero mean, 
unity variance) added to the A-matrices 

which simulates Gaussian white noise over 
the whole frequency spectrum. It is evident 
from Table 3 that identification is very high 
(99-100%) under low noise conditions with 
the exception of Metrio.ρtera brachyptera 
(OR06) and that mis-identification is zero 

until 30% noise is added. The latter is a 
fundamental requirement for an automated 
system. 

However, it is important to note that 
some species exhibit a very rapid decline in 
identification accuracy (OROI-Meconema 
thalassinw冗 and ORl3-Gryllota伊a g:ηllo­

ta幼α). Both species have characteristically 
low dominant frequencies and this may conｭ
tribute to confusion. However, it is known 
that the former species produces substrateｭ
based sounds and would not be detected in a 
bioacoustic survey. Further work on deterｭ
mining the reasons needs to be carried out. 
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Table 3. Orthoptera species identification accuracy with added noise. For ID code. see Table 2. 

Noise Level (%) 
ID Code 

3 5 10 20 30 40 50 

OROl 99.9 83.5 54.2 24.3 8.7 5.3 4.7 4.3 
OR02 100 100 100 100 96.7 89.3 82.3 76.8 
OR03 100 99.6 94.8 76.8 63.8 60.6 58.6 53.6 
OR04 100 100 100 99.9 94.1 86.8 79.3 72.0 
OR05 100 100 99.4 90.1 71.1 66.9 59.0 57.9 
OR06 85.6 65.5 58.8 54.3 54.3 52.0 52.0 47.9 
NR07 100 100 99.9 94.2 65.0 45.1 29.1 21.6 
OR08 100 100 100 100 99.1 95.1 87.4 79.0 
OR09 100 100 100 100 100 99.7 98.4 95.5 
ORI0 100 100 100 100 99.4 94.8 84.5 76.0 
ORll 100 100 100 100 100 100 100 100 
OR12 100 100 100 100 99.1 93.8 84.1 73.8 
OR13 100 84.9 63.7 34.2 16.5 9.3 7.6 6.0 
OR14 100 100 100 100 93.4 85.7 76.1 73.6 
OR15 100 100 99.7 89.3 74.9 61.5 58.9 52.2 
OR16 100 99.9 98.0 84.9 68.0 63.8 59.2 59.4 
OR17 100 86.4 74.4 63.4 58.2 52.8 50.2 45.8 
OR18 100 98.1 86.7 59.7 47.0 38.1 35.4 32.8 
OR19 100 100 99.9 95.6 80.7 71.5 62.8 62.9 
OR20 100 100 99.9 91.3 77.1 67.7 63.7 60.5 
OR21 100 100 100 100 99.8 97.5 92.7 81.8 
OR22 99.8 86.1 74.1 62.3 54.5 56.4 53.5 54.5 
OR23 100 100 100 99.7 94.1 84.6 78.5 71.9 
OR24 100 99.6 92.0 65.8 48.9 39.6 36.7 30.6 
OR25 100 100 100 100 100 99.8 98.9 96.6 

Mean positive 99.4 96.1 91.8 83.4 74.6 68.7 63.7 59.5 
ident. (%) 

Table 4. Species of Japanese bird used in IBIS tests. 

ID Code Latin Name English Name 

JBOl Acrocephalus arundinaceus Great Reed Warbler 
JB02 Cuculus canorus Common Cuckoo 
JB03 Cettia diphone Bush Warbler 

JB04 Cuculus poliocePhalω Little Cuckoo 
JB05 Emberiza variabilis Gray Bunting 

JB06 Ficedula narcissina Narcissus Flycatcher 

JB07 Megalurus pηleri Japanese Marsh Warbler 

JB08 Parus major Great Tit 

JB09 Phylloscopus tenellipes Pale-legged Willow Warbler 

JBI0 Turdus chrysolaus Brown Thrush 

Variations in classifier using MLPs and (Table 4) which occur in woodland and grass-

expert system identification have been land in ]apan. The same approach was em-

assessed, all with reasonable results (Ches- ployed but the classifier was a MLP with 784 

more et al., 1998; Chesmore, 1997 c, 1998c). inputs (as before), 40 neurons in the hidden 
layer and 10 outputs (1 for each species). 

2. Results for Birds in ]apan Sounds for training were obtained from CD 

During the author's visit to ]apan in March (Kabaya and Matsuda, 1996a, b, c) and results 
1998, IBIS was tested on 10 species of bird were very encouraging. Table 5 gives the 
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Preliminary results for bird identif�ation matrix. For!D code. see Table 4 Tab!e 5. 
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Fig. 5. Cuculus �olioce�halus: A. Time domain waveform of the sound for training; B. Time domain 

waveform under natural conditions (woodland); C. A-matrix for the sound for training; D. A-matrix 

under natural conditions (woodland). 
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results in the form of a confusion matrix. It is 
evident that the recognition accuracy for 
good quality sounds is 100% with no misｭ
identification. The system was tested further 
by extracting a single call of Cuculus ρolioce­

�halus from a woodland recording by Dr Oba 
from the Natural History Museum and Instiｭ
tute, Chiba (CBM Acc. No. 043-0086) and 
presenting this to the system. Fig. 5A shows 
the time signal under good conditions, 5B the 
time signal under natural conditions, 5C the 
A-matrix for the bird under good conditions 
and 5D the A-matrix for the bird under natuｭ
ral conditions. Under these conditions the 
species was r巴cognised with 86% accuracy. 

Again , the research is still in its infancy 
and much work needs to be done. One parｭ
ticular area of research which is considered 
essential is to preserve the tim巴 structure of 
the sounds since bird (and higher animals) 
song is complex in both the time and freｭ
quency domains. Work at Hull is currently 
investigating the separation of individual 
syllables and applying syntactic pattern recｭ
ognition techniques. 

Image Processing Applications 

Image processing is the second major 
sensor system for species identification. It is 
possible to use monochrome or colour images 
captured digitally , scanned from photoｭ
graphs or from scanning 巴lectron microｭ
scopes. It is evident from Tabl巴 1 that the 
range of applications is wider than for 
bioacoustics as image processing is more 
generic. For the purpos巴s of this paper, it is 
convenient to divide the applications into 
species identification or discrimination and 
morphological analysis of individuals within 
populations. 
Species identification research can be 
further sub-divided into categories describｭ
ing the final potential application such as 
biodiv巴rsity assessment, discrimination beｭ
tween c10s巴Iy similar quarantine species, 
agricultural applications, paleobiology and 
paleobotany. Mention has already been 
made about image-based insect counting 
which aims to speed up sorting; other appliｭ
cations include identification of braconid 
hymenoptera (Weeks et al., 1997; Weeks and 
Gaston , 1997) and solitary bees by their wing 

venation, leafhopper species (Dietrich and 
Pooley, 1994), blue-green algae (Thiel, 1994) 
and cyanobacteria. Discrimination of c10sely 
similar species for quarantine purposes will 
be described in detail later in the paper. 
Agricultural applications have concentrated 
on real-time identification of weed species for 
herbicide placement, part of the concepts 
of integrated crop manag巴ment (ICM) and 
integrated pest management (IPM). Recent 
research has used fractals and Fourier analyｭ
sis (Critten, 1996) and colour chromaticity 
(Shulin and Runtz, 1995). A related applicaｭ
tion using spectral reftectance to discrimiｭ
nate betw巴en plants and soil is described in 
Vrindts and De Baerdemaeker (1997). It 
should be noted that the latter project does 
not use image processing but near IR diffuse 
spectral reftection. Paleobotany research has 
been on identification of pollen from sediｭ
ment cores in lakes to recreate environｭ
men tal histories (Langford et al., 1990); no 
other research projects have been found to 
date. 
Morphological analysis (measurements) 
using image processing is w巴11 established in 
many fields such as biomedicin巴 (e.g. ， X-ray 
images) and engineering (e.g. robotics , fault 
diagnosis) but less well so in biology and 
even less in entomology. The main entomoｭ
logical applications are for Lepidoptera to 
measure genetic inftuences on wing patterns, 

for example Windig et al. (1994) used an 
image processing system for quantifying 
seasonal polyphenism in species of Bicyclus 
butterfties. 

Image Processing Applications at Hull 
The image processing projects at Hull can 
be divided into two categories-morphologｭ
ical analysis of Lepidoptera and automatic 
discrimination of closely similar species. AII 
the research has been carried out using 
custom software written in Visual C for Winｭ
dows or Matlab. Matlab has the advantage of 
simplicity in prototyping algorithms but is 
interpreted and hence slow whereas C reｭ
quires a detailed knowledge of programming 
but is very fast. Matlab also has a number of 
toolboxes such as image processing and artiｭ
ficial neural networks which speed up the 
development process. Images are derived 
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Fig. 6. Image processed Biston betularia forewings. 

from digital cameras attached to microscopes 

or in the case of Lepidoptera directly from a 

digital camera; live specimens can be photoｭ

graphed without harm using an elecｭ

troimmobilisation unit develop巴d at Hull 

(Chesmor巴 and Monkman , 1994). 

Morphological Analysis 

Morphological analysis of Lepidoptera has 

been attempted for a numb巴r of di仔巴rent

applications including analysis of variation 

in British butterflies, quantitative analysis of 

melanism in Biston betularia for industrial 

melanism studies and analysis of the colour 

morphs of Noctuα pronuba. One future appliｭ

cation will be determination of fluctuating 

asymmetry in Melanargia galathea , a species 

of butter日y which occurs in sporadic populaｭ

tions in the Y orkshire W olds not far from 

Hull. The first 2 applications will be disｭ

cussed in more detail. 
Quantitative Analysis of Melanism. Melaｭ

nism is exhibited in a number of moth speｭ

cies in several countries in the World. Britain 

appears to have the highest number of speｭ

cies, the most notable being the Peppered 

moth , Biston betularia which has 2 common 
forms-f. かρ'Picαwhich has a white back-

olL_ーァ← 7 ・---- -~匝亘面記
61 127 191 255 

ground and many black spots, and f. carbonaｭ

ria which is entirely black. F. carbonaria was 

thought to exist in very small proportions 

prior to the industrial revolution in Britain 

but became the predominant morph very 

rapidly after the onset of the revolution. In 

some heavy industrial localities such as 

Manchester, the proportion of f. carbonariα 

became 100% and remained so until the 

1960's when a clean air act was introduced, 

reducing smoke pollution dramatically. 

Since then , the proportion of f. carbonaria has 

reduced in most localities as lichens have 

re-established. However, the traditional exｭ
planation of selective predation due to the 

light form being visible on dark , smoke 

cover巴d tree trunks and hence being eaten, 

has some problems. In America, the same 

increases and decreases of a very closely reｭ

lated sp巴cieshave followed the same trend as 

in Britain but without the loss of any lichens. 

Also, B. betulariαhas an intermediate form , f. 
insularia , which is thought to be continuousｭ

ly variable between the 2 extremes. ln addi 

tion , in 1 study in Helsinki using 2 closely 

related moth species (Oligia latruncula and 0. 

strigilis) has further confused the situation in 

that O. strigilis has increased in melanic pro・
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Fig.7. Example of continuous variation in Biston betularia 

portions while 0. latrunculαhas decreased 
over the same period. Image processing has 
been us巴d to measure the proportions of 
black and white in a forewing of B. betularia 
in order to quantify the amount of melanism 
(Chesmore and Yorke, 1997 a, b; Chesmore, 

1998a). This is achieved by detecting the 
wing edge, using thresholding to discrimiｭ
nate between the white and black pixels and 
then counting the number of black pixels. 
The result is normalised against wing area 
and expressed as a percentage. Fig. 6 shows 
2 wings, 1 of each form , processed in this 
manner, together with estimates of “ black­
ness". Fig.7 shows how it is possible to give 
more detail using this technique instead of 
classifying “normal" or “ melanic" (includes f. 
insularia). Research is ongoing and it is 
hoped that mor巴 extensive trials will take 
place in 1999 
Analysis of Noctuα pronuba Forms. This 
moth is extremely common in Britain and 
can be a pest in gardens. It exhibits up to 7 
named colour forms and is sexually dimorｭ
phic. Because of this and it's abundance, it 
was chosen as a test subject for image analyｭ
sis with an emphasis on colour discriminaｭ
tion of forms. In Yorkshire only 4 forms are 
commonly found; thes巴 are f. ochreα(femal e) ， 

f. rufa (female) , f. innubα(male) and f. ochrea-

brunnea (male), with the last being the comｭ
monest recorded at the trapping site (using a 
low power ultraviolet light trap). Images of 
detached forewings were obtained using a 
]VC colour CCD camera and digitised with a 
frame grabber installed in a Pentium comｭ
puter. Each image was digitised to 272 x 320 
pixels ， 24・bitcolour. Each wing was digitised 
with a blue background which provided a 
strong contrasting colour to the wings and 
could be removed by simple thresholding of 
the blue image. In 1 study 58 features were 
extracted from each wing image, including 
mean , median , mode , standard d巴viation ，

Kurtosis，巴nergy and entropy of the green 
(G) , red (R) and blue (B) channels , R-G , B- G, 

R-B covarianc巴 and correlation , moments 
and edge densi ties (Chesmore et al. , 1996). 
This number was reduced to 16 features 
describing each wing by considering the 
ranges of variability of the parameters and 
rejecting those with very small variability 
The methods included principal components 
analysis , cluster analysis and unsupervis巴d
neural networks. In cluster analysis and 
neural networks , 5 clusters were sel巴cted to 
correspond to the 4 forms and a fifth as a 
“ catch-all". Different colour forms can be 
distinguished successfully , f. ochrea being 
almost always classifi巴d perfectly. It should 
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also be noted that some entomologists conｭ
sider several of the forms as con tin uousl y 

variable and the named forms are extremes; 
this is born巴 out to some d巴gree in these 

results since in most cases , f. ochreabrunnea is 
spread across several groups. 

Automatic Discrimination of Closely 
Similar Species 
This research is more recent than previous 
ly described work and there are fewer results. 
The two projects under way are both related 
to the early detection of quarantine sp巴c i 巴s

which are considered to be too dangerous (in 

terms of economy) to be allowed into Britain. 
The work is in association with Central Sci 
enc巴 Laboratory (CSL) locat巴d n巴arYork and 
one of its roles is to examine consignments of 
plants for import to assess the presence of 

pests. It is important to be able to detect the 
presence of pests as early and accurat巴 l y as 
possible and this is carried out manually by 
experts. The taxa s巴 l ected for the projects 

are Liriomyza spp (Diptera: Agrom yzidae) , a 

leafminer and Colletotricrichum spp , a fungus 
causing strawberry black spot. 
Detection of Liriomyza spp. Liriomyzα tn 

folii is an established pest in Britain on vari 
ous horticultural crops such as tomato and 
chrysanthemum whereas L. huidobrensis is a 
quarantine pest and cannot be allowed into 

A 

the country. It is therefore important to proｭ
vide rapid and accurate id巴ntification ， allowｭ

ing for more specific targetting of pesticides 
and other control and eradication measures , 

minimising environmental damage, pr巴vent­
ing further inf巴s ta tion and saving money 
Identification is important but time consumｭ

ing , often requiring identification of the 
larvae or waiting until they become adults 
Image processing of the leaf mines may proｭ
vide a solution. The ongoing project (Pether, 

1998) is investigating whether it is possible 
to discriminate mines from each species; this 

is complicated by the fact that both species 
are polyphagous and the mine character is 

dependent on hostplant sp巴c i es. Fig. 8A 
shows a typical leaf mine and Fig. 8B shows 
how it is possible to discriminate between the 
l 巴af and min巴 using simple edge detection. 

Discrimination between C. acutatum and C. 
gloeosporioides. C. acutatum is an EC listed 
quarantine organism and is separat巴d from 
C. gloeosρorioides in part by examination of 
conidia which are morphologically similar 

One of the key characters used is the shape of 
the spore's apex-described as acute for C. 
αcutatwηand obtuse for C. gloeosporioides 
The aim of the project was to ascertain if 
image analysis could quantify this diff巴rence

and reliably separate th巴se species. Images 

were obtained from CSL and were d巴rived
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from microscope slides at 400 times magniｭ

fication , digitised using a three chip colour 
camera (]VC-TK 1270E) and captured with a 

Snapper 24 frame grabber using computer 

software from Optimas (Seattle, USA). lniｭ
tially, analysis was performed using Optimas 
(version 5.2) at CSL. Length (principal axis), 
breadth (minor axis) and area of conidia were 

measured and the data exported to Microsoft 

Excel where the area bounding the spore 

(length X breadth) and the areajbounding 

area were calculated. lmages were then anaｭ

lysed using Matlab at Hull. A theoretical 

ellipse was generated from the principal and 

minor axes and then compared with the 

actual spore contour (outline). Secondly, the 
principal and minor axes were used to sepaｭ

rate each spore into 4 segments and individｭ

ual areas calculated. These were placed in a 

vector and multiplied by the Hadamard 

matrix to calculate the Hadamard-Walsh 

spectrum of the spore shape (related to symｭ

metry properties). Results showed that there 

was a statistically significant difference 

between C. αcutatum and C. gloeosρorioides 

for the areajbounding area for conidial line 

drawings. Although, a similar trend was 
obtained for conidia from cultures it was not 

statistically significant. Comparison of 
spores with a theoretical ellipse failed to 

separate species reliably. The Hadamard 

function, however, showed greater promise. 
The vertical component for C. acutatw冗
ranged from 1-2 whilst for C. gloeos.ρorioides 

it was between 0-1 , showing reasonable disｭ
crimination (Lane et al., 1998). 

Conclusions 

The paper has given a brief outline of comｭ

puter-aided taxonomy, concentrating on auｭ
tomated species identification. It is evident 
that there are many possible applications for 

automatic identification, perhaps the most 
important being the development of more 

rapid biodiversity assessment methods. 
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技術移転:電子工学技術を生態学と昆虫学

における種識別へ適用する

David Chesmore 

School of Engineering, University of Hull 

Hull , HU6 7RX, England 

電子工学やコンビューター技術の最近の発達は，生

物学，生態学および環境保全に新しい適用の道を開い

ている.なかで・もこうした発展ゆえに際立った研究領

域として，コンビュータ依存型分類学が現実化しつつ

ある.コンビュータ依存期分類学は自動種識別，コン

ビュータを恭礎とする検索表，および分岐学のような

分類法を包含する.一方で，経済的に重要な分類群の

コンビュータを基礎とする検索表の発展には相応な研

究努力が投入されているが，穫の自動識別には相対的

に僅かな研究しか行われていない.自動識別が必要と

される応用は多様で，昆虫の個体数のカウント，積類

の選別，有害昆虫のモニタリングおよび生物学的多様

性評価を含む. したがって，本稿は自動識別研究に着

目し，ハル大学他で近年および目下進行中の課題であ

る，昆虫と鳥績の生物音響学的識別と検疫菌類や昆虫

類の区別への 1IIIj像解析の応用について記述する.本稿

は， 1998 年 3 月 21 H に千葉県立中央博物館で行わ

れた公開講演会に基づくものである.


