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Abstract Recent advances in electronics and computing technology are leading to new
applications in biology, ecology and conservation; one particular research area, computer-aided
taxonomy, is only becoming a realily because of these advances. Computer-aided taxonomy
encompasses automatic species identification, computer-based identification keys and taxo-
nomic methods such as cladistics. Whilst there is a reasonable research effort being put into the
development of computer identification keys for economically important groups, there is
relatively little research on automated identification of species. Applications involving auto-
mated identification are diverse and include insect counting and sorting, pest monitoring and
biodiversily assessment. Accordingly, this paper concentrates on automated identification
research and describes recent and ongoing work at Hull University and elsewhere on two
topics-bioacoustic identification of insects and birds, and image processing applications for
discrimination of quarantine species of fungi and insects. The paper is based on the Open
Lecture given at the Natural History Museum and Institute, Chiba, Japan on March 21, 1998.

Key words: computer-aided taxonomy, automated species identification and recognition,
bioacoustics, image processing, computer applications, entomology, ecology.

In recent years, the growth in the electron-
ic and computing industries has been re-
markable, mainly due to the development of
high speed, low cost microprocessors and
memory. The advent of computers operating
at 300 MHz or higher, with hundred’s of meg-
abytes of memory have led to new applica-
tions unheard of only a few years ago. In
biology and ecology, there are now many
possibilities for the development of research
tools, commercial instrumentation and soft-
ware packages for biological analysis. It is
also becoming increasingly apparent that
these new applications can only be properly
designed if biologists have a modest knowl-
edge of engineering and vice versa. Indeed, it
is the author’s belief that the only way for-
ward is to increase multidisciplinary teach-
ing and research in universities and colleges.
It is from the multidisciplinary background
of the members of the Control and Intelligent
Systems Engineering Research Group, a
merger of the Control Research Group and
the Environmental Electronics Research

Group, at Hull University that the research
projects described in this paper have arisen.
The paper describes a number of projects
that fall under the heading of computer-
aided taxonomy (CAT), a new term which
was first defined at the inaugural meeting of
the BioNET International Group for Com-
puter-aided Taxonomy (BIGCAT) in Cardiff,
Wales in July 1997 (Chesmore, 1998b). CAT
is defined as the application of any computer
or computer technique for taxonomic pur-
poses.

CAT can be divided into 3 groups: auto-
mated identification systems, identification
keys and software techniques for taxonomy
such as cladistics. It has great potential for
aiding species identification, especially dur-
ing biodiversity studies where there may be
many species. The quality of such surveys is
dependent on the accuracy of the identifi-
cation process which may be difficult and
time-consuming. Edwards and Morse (1995)
give a detailed account of the development of
computer-aided identification mainly in key-
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based systems. It is beyond the scope of this
paper to discuss key systems which are gen-
erally regarded to be well developed (see for
example, Dallwitz et al., 1998 and Pankhurst,
1991). Instead, the paper concentrates on
more recent work involving automated and
semi-automated species identification. More
detailed discussions of CAT can be found in
(Chesmore, 1997a, b; Chesmore and Morse,
1997).

Automated Species Identification

Before considering automated identifica-
tion applications it is important to make a -
distinction between “identification” as de-
scribed here and the term used for classifi-
cation which is in wide use in taxonomy. In
the applications described in this paper, “iden-
tification” is used in the context of associat-
ing an unknown signal (acoustic signals,
images, etc.) with one in a pre-defined set of
classes (species or groups). The identification
system is trained with signals from each
class prior to use. There is an ongoing debate

Table 1. Examples of species identification systems.

» o«

as to whether “identification”, “recognition”
or “classification” should be used; it is the
author’s experience from meetings such as
the Systematics Association Biennial Confer-
ence (Chesmore and Morse, 1997) and Fifth
Workshop of the ESF Network in Systematic
Biology on New Directions in Systematics
(Chesmore, 1997b) that “identification” is the
preferred term in Europe and that “classifica-
tion” is to be restricted to taxonomy even
though it is used commonly in engineering
applications.

The concept of automated identification of
species has received relatively little attention
until recently; Table 1 shows some examples
of current and past research areas. The tech-
niques employed generally fall into 2 broad
categories—acoustics and image processing,
with a few miscellaneous methods involving
flow cytometry for algae and phytoplankton
(Balfoort et al., 1992; Boddy et al., 1994), and
radar for aerial insect migration (Smith et al.,
1993). .

Species identification by electronic means

Species/Group Sensor(s)

Classification Method(s)

Fish species

Active acoustics (sonar)

PDF, cluster analysis, ANN

Orthoptera Passive acoustics TDSC+ ANN

Amphibia Passive acoustics FFT+machine learning
Birds Passive acoustics FFT, LPC, TDSC+ ANN
Mosquito Passive acoustics Wingbeat frequency

Flying insects

Scatter

Infra-red Doppler

Wing beat frequency

Lepidoptera Monochrome & colour image Colour discrimination
Phytoplankton Flow cytometry ANN

‘Monochrome image ~~ Linear discrimination, ANN
Hymenoptera Monochrome image Wing venation; PCA

Leaf-miners

Monochrome & colour image

ANN

Fungal spores

Monochrome image

ANN, shape discrimination

Plants,

weed species Monochrome & colour image

FFT, colour discrimination

Nanofossils

Scanning electron microscope

General image processing

Pollen

Scanning electron microscope

Texture analysis

Notes: ANN, artificial neural network; PDF, probability density function; TDSC, time domain signal
coding; FFT, fast Fourier transform; LPC, linear predictive coding.
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can be considered to be an application of

general pattern recognition in which an un-

known (specimen) is placed into one of a

number of possible classes depending on fea-

tures extracted from measurements on the
species. Pattern recognition has many appli-
cations ranging from handwriting recogni-
tion to speech analysis and identification of
faults in machinery (condition monitoring).

Automated species identification is very sim-

ilar to many of these applications. Two main

levels of automation can be identified—par-
tially and fully automated as described
below:

a) Fully Automated. Complete identifica-
tion without user interaction; this requires
highly reliable identification with a very
low (ideally zero) probability of mis-
classification.

b) Semi-automated. This category is per-
haps more realistic than a) as it allows
prior sorting into higher taxonomic catego-
ries and presents the user with data for
further manual identification if required. It
is a relaxation of fully automated identifi-
cation and is therefore more likely to be
feasible in the short term.

It is anticipated that semi-automated sys-
tems will be the most viable as they allow the
user to perform or verify the final identifica-
tion. This is considered to be more accepta-
ble in the short term as there is a tendency
for humans to mistrust computers or con-
sider them as a threat which may result in a
possible impediment to CAT. It is therefore
expected that semi-automated systems will
play an important role in validation of tech-
niques and in obtaining general acceptance
of automation. In addition, such systems
must not be seen as replacements for trained
taxonomists but as identification aids.

Applications of automated identification
systems are diverse and include insect
counting, biodiversity assessment, ecological
monitoring and detection/identification of
pests. Each area is discussed in more detail
below:

a) Insect Counting. Little research has
been carried out in this potentially impor-
tant area. Gonzales (1986) developed a
pilot image processing system for identify-
ing insects from agricultural surveys in an

effort to speed up the often time consum-
ing sorting process. It has been suggested
that systems of this nature could aid con-
siderably in sorting from large catches
even if the sorting process only identifies
to order or genus. Such pre-sorting could
reduce the identification time by an order
of magnitude. This also links to bio-
diversity assessment and pest monitoring
(see below).

b) Biodiversity Assessment. Systematics
Agenda 2000 (1994) has stated that bio-
diversity inventories must be carried out
for as many habitats as possible. However,
increasing destruction of many habitats
has led to the necessity for developing
more rapid biodiversity assessment in an
attempt to identify habitats and areas rich
in biodiversity. Riede (1993) suggested
that since many rainforest species produce
sounds, it may be possible to use acoustic
analysis for monitoring fauna. Riede used
Orthoptera for more rapid biodiversity
estimation in a tropical lowland forest in
Ecuador and Oba (1994, 1995) used bird
song as a measure of the “natural sound
diversity” in Japan. Until very recently, it
has only been possible to identify species
manually from recordings which is both
costly and time consuming; the develop-
ment of automated identification systems
will speed up the process and lead to con-
tinuous real-time monitoring.

c) Ecological Monitoring. Potential appli-
cations for ecological monitoring are di-
verse and include recording the occurrence
of call types and correlating with en-
vironmental conditions, long term continu-
ous monitoring and determination of bird
species for species-specific bird strike
avoidance (bird scarers) in airports. It is
also theoretically possible to identify and
monitor individuals in populations of some
taxa (e.g. birds).

d) Pest Monitoring. Many animal pests,
particularly insects, can be detected by
their sound production. In the USA,
Shuman et al. (1993) used acoustics for
detecting beetle larvae in rice grains.
Hagstrum et al. (1990) used similar tech-
niques for monitoring of Rhizopertha dom-
inica (Coleoptera: Bostrichidae) in wheat
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kernels. It is theoretically possible to
detect and, more importantly, identify
many different insect and animal pests in a
variety of agricultural and horticultural
environments although very little work
has been done to date.

Identification Using Bioacoustics

Many insect, bird and animal species pro-
duce sounds either deliberately for communi-
cations or as a byproduct of movement
(flying, eating, walking, etc.). In many cases,
such sounds can be used to detect the pres-
ence of animals or, if sufficiently distinctive,
identify species. The majority of acoustic
applications are passive, i.e. they rely on calls
and sounds produced by animals. The major-
ity of research to date has been on the identi-
fication of birds in general (McBraith and
Card, 1995; Anderson et al., 1996), nocturnal
migrant birds (Mills, 1995), frogs and other
amphibia (Taylor et al., 1996) and insects
(Chesmore et al., 1998; Chesmore and Nellen-
bach, 1997). Applications involving detec-
tion rather than identification are less com-
plex and have mainly been for stored grain
insect pests (Shuman et al., 1993; Shuman et
al., 1997; Weaver et al., 1997; Anderson et al.,
1996).

An alternative to passive listening is active
sonar which relies on scatter from trans-
mitted sound, often ultrasound. Underwater
sonar applications are currently restricted to
identification of fish species in shoals (Sim-
monds et al., 1996; Scalabrin et al., 1996) and
zooplankton classification (Martin et al.,
1996). The latter research project does not
identify to species but determines approxi-
mate groupings according to acoustic spec-
tral reflection characteristics.

Development of the Intelligent Bioacoustic
Identification System (IBIS)

IBIS is a multipurpose testbed for auto-
mated bioacoustic identification applications.
It is based on a technique known as time
encoded speech (TES) which was developed
in the 1970’s by King (King and Gosling,
1978) as a purely time domain approach to
the compression of speech for digital trans-
mission. It has subsequently been used in a
number of applications including acoustic
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Fig. 1. Definition of a TDSC epoch.

condition monitoring of machinery (Lucking
et al., 1994) and heart sound analysis and
defect identification (Swarbrick and Ches-
more,1998). TES is now termed time domain
signal coding (TDSC) by the author (Ches-
more, 1998c) since the term is more general
than the original application. TDSC charac-
terises any bandlimited signal by its shape
between successive real zeros (termed an
epoch); generally, this shape is taken between
actual zero-crossings. Each epoch is de-
scribed in terms of its duration in samples (D)
and shape (S) usually taken as the number of
minima or signal energy as indicated in Fig.
1 which shows a 10 sample epoch with 2
minima (D=10, S=2). The number of possi-
ble D-S combinations (symbols) is termed the
natural alphabet which can often be non-
linearly mapped onto a smaller symbol set to
give signal compression. In the original
speech application, the coded symbols were
transmitted and used to regenerate the
speech signal at the receiver thus providing
digital speech transmission at substantially
reduced data rates.

TDSC can be described as the concatena-
tion of a signal’s D-S symbols, i.e. it produces
a sequential stream of symbols and one anal-
ysis method is to examine the occurrence of
pairs of symbols over time to give a histo-
gram, A, which describes the number or pro-
portion of symbols 7 and j occurring in suc-
cession, i.e. the number of times ¢ is followed
by j by a lag L. A 2-dimensional histogram,
the A-matrix, can be formed, expressed math-

ematically as:
1 m=N

9= WL yipes 9

where L =lag
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xij(n)=1 if tn)=i and tn—L)=j
(0 otherwise)
t(n)=n'"" TES symbol

This fixed size histogram with time-
invariant dimensions is the feature set used
for classification purposes. The entry at posi-
tion (7, j) represents the number (percentage)
of occurrences of the TDSC symbol pair ¢ and
j where j is delayed relative to the first (in
epochs). In this application, a lag of 1 epoch
is used; multiple lags may also be employed
giving rise to multi-dimensional matrices.
The A-matrix is independent of any gain fac-
tors if the input signal has no dc component
and is therefore insensitive to relative en-
ergies of different segments of the signal.

Each sound (call, syllable, etc.) is trans-
formed into a single A-matrix which forms
the basic feature for pattern classification
using an artificial neural network (ANN).
ANNSs are now widely used in many classifi-
cation and identification problems as they
can be trained, are good at handling fuzzy
and disparate data and are able to perform
non-linear discrimination. There are many

forms of ANN which can be divided into
supervised (requires training) and un-
supervised classification (no training). The
majority of classification methods used in
IBIS are based on multilayer perceptrons
(MLP) using backpropagation for training.
More recently, self-organising features maps
have been investigated with some success.

All software has been developed using
Matlab, a generic mathematical program-
ming language optimised for matrix manipu-
lation. Matlab has been chosen for two rea-
sons—it is simple to use and a wide range of
toolboxes are available, in this case the
neural networks toolbox. Matlab runs on
any 486 computer (or better) with at least 4
Mbytes of RAM and a hard disc, and is capa-
ble of running on portable PCs. The sounds
are sampled at 44 kHz, 16-bits per sample
using a program called Goldwave V3.03 via
the line input of a Soundblaster card.

Bioacoustic Identification Examples
To date, 2 different test groups have been
selected—25 species British Orthoptera and

Table 2. List of British Orthoptera species for IBIS tests.

ID Code Latin Name English Name

ORO1 Meconema thalassinum Oak Bush-cricket

ORO02 Tettigonia viridissima Great Green Bush-cricket
ORO03 Decticus verrucivorus Wart-biter

ORO04 Pholidoptera griseoaptera Dark Bush-cricket

ORO05 Platycleis albopunctata Grey Bush-cricket

ORO06 Metrioptera brachyptera Bog Bush-cricket

ORO07 Metrioptera roeselii Roesel’s Bush-cricket
ORO08 Conocephalus discolor Long-winged Cone-head
ORO09 Conocephalus dorsalis Short-winged Cone-head
ORI10 Acheta domesticus House-cricket

ORI11 Gryllus campestris Field-cricket

OR12 Nemobius sylvestris Wood-cricket

ORI13 Gryllotalpa gryllotalpa Mole-cricket

OR14 Stethophyma grossum Large Marsh Grasshopper
OR15 Stenobothrus lineatus Stripe-winged Grasshopper
OR16 Stenobothrus stigmaticus Lesser Moltled Grasshopper
OR17 Omocestus rufipes Woodland Grasshopper
OR18 Omocestus viridulus Common Green Grasshopper
ORI19 Chorthippus brunneus Field Grasshopper

OR20 Chorthippus vagans Heath Grasshopper

OR21 Chorthippus parallelus Meadow Grasshopper
OR22 Chorthippus albomarginatus Lesser Marsh Grasshopper
OR23 Euchorthippus pulvinatus Jersey Grasshopper

OR24 Gomophocerippus rufus Rufous Grasshopper

OR25 Myrmeleotettix maculatus Mottled Grasshopper
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10 species of bird occurring in Japan. Results 1. Results for British Orthoptera
for each test group will be considered sepa- Table 2 lists the 25 species used in 1 set of
rately. tests. The sounds were derived from a

2 Samples 3 = S
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Fig. 2. Gryllus campestris (OR11): A, Time domain waveform; B, Average scaled A-matrix.
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Fig. 3. Chorthippus albomarginatus (OR22): A, Time domain waveform; B, Average scaled A-matrix.
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Fig. 4. Meconema thalassinum (ORO1): A, Time domain waveform; B, Average scaled A-matrix.

widely available audio cassette (Burton and
Ragge, 1987) available as an accompaniment
to The Grasshoppers and Allied Insects of
Great Britain and Ireland (Marshall and Haes,
1988) and digitised as previously described.
TDSC symbols for up to 2 seconds of sound
for each species. The subsequent A-matrices
were used to train a single layer Perceptron
consisting of 784 inputs (1 for each location
in the A-matrix) and 25 output neurons, 1 for
each species. Figs. 2, 3 and 4 show time
plots and A-matrices for 3 species—Gryllus
campestris (OR11), Chorthippus albomargina-
tus (OR22) and Meconema thalassinum
(ORO1). The single layer Perceptron was
developed by Rosenblatt in the 1960’s (Ro-
senblatt, 1962) and is a competitive learning
network that performs n-dimensional dis-
criminant analysis. The results suggest that
TES is a good pre-processor providing wide
separation of sounds which would have sim-
ilar spectra. This is evident when the exam-
ple A-matrices in Fig. 2B, 3B and 4B are
examined. The differences between species
are obvious, especially for M. thalassinum
which has predominantly low frequencies
compared with the other 2 species.

Once trained, the system was tested with
new sounds; Table 3 shows identification re-
sults with various levels of added noise to
simulate response to poorer conditions. Each
entry is an average of 1000 normally dis-
tributed random A-matrices (zero mean,
unity variance) added to the A-matrices
which simulates Gaussian white noise over
the whole frequency spectrum. It is evident
from Table 3 that identification is very high
(99-100%) under low noise conditions with
the exception of Metrioptera brachyptera
(OR06) and that mis-identification is zero
until 30% noise is added. The latter is a
fundamental requirement for an automated
system.

However, it is important to note that
some species exhibit a very rapid decline in
identification accuracy (ORO01—Meconema
thalassinum and OR13—Gryllotalpa gryllo-
talpa). Both species have characteristically
low dominant frequencies and this may con-
tribute to confusion. However, it is known
that the former species produces substrate-
based sounds and would not be detected in a
bioacoustic survey. Further work on deter-
mining the reasons needs to be carried out.
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Table 3. Orthoptera species identification accuracy with added noise. For ID code, see Table 2.

Noise Level (%)

ID Code
1 3 5 10 20 30 40 50

ORO1 99.9 83.5 54.2 24.3 8.7 5.3 4.7 4.3
ORO2 100 100 100 100 96.7 89.3 82.3 76.8
ORO03 100 99.6 94.8 76.8 63.8 60.6 58.6 53.6
ORO04 100 100 100 99.9 94.1 86.8 79.3 72.0
ORO05 100 100 994 90.1 71.1 66.9 59.0 57.9
ORO06 85.6 65.5 58.8 54.3 54.3 52.0 52.0 47.9
NRO7 100 100 99.9 94.2 65.0 45.1 29.1 21.6
ORO08 100 100 100 100 99.1 95.1 87.4 79.0
ORO09 100 100 100 100 100 99.7 98.4 95.5
OR10 100 100 100 100 994 94.8 84.5 76.0
OR11 100 100 100 100 100 100 100 100
ORI12 100 100 100 100 99.1 93.8 84.1 73.8
OR13 100 84.9 63.7 34.2 16.5 9.3 7.6 6.0
OR14 100 100 100 100 934 85.7 76.1 73.6
OR15 100 100 99.7 89.3 74.9 61.5 58.9 52.2
OR16 100 99.9 98.0 84.9 68.0 63.8 59.2 59.4
OR17 100 86.4 74.4 63.4 58.2 52.8 50.2 45.8
OR18 100 98.1 86.7 59.7 47.0 38.1 354 32.8
OR19 100 100 99.9 95.6 80.7 715 62.8 62.9
OR20 100 100 99.9 91.3 77.1 67.7 63.7 60.5
OR21 100 100 100 100 99.8 97.5 92.7 81.8
OR22 99.8 86.1 74.1 62.3 54.5 56.4 53.5 54.5
OR23 100 100 100 99.7 94.1 84.6 78.5 719
OR24 100 99.6 92.0 65.8 48.9 39.6 36.7 30.6
OR25 100 100 100 100 100 99.8 98.9 96.6
Mean positive 99.4 96.1 91.8 83.4 74.6 68.7 63.7 59.5

ident. (%)

Table 4. Species of Japanese bird used in IBIS tests.

ID Code Latin Name English Name

JBO1 Acrocephalus arundinaceus Great Reed Warbler

JB02 Cuculus canorus Common Cuckoo

JB03 Cettia diphone Bush Warbler

JB04 Cuculus poliocephalus Little Cuckoo

JB05 Emberiza variabilis Gray Bunting

JBO6 Ficedula narcissina Narcissus Flycatcher

JBO7 Megalurus pryeri Japanese Marsh Warbler

JBO8 Parus major Great Tit

JB09 Phylloscopus tenellipes Pale-legged Willow Warbler

JB10 Turdus chrysolaus Brown Thrush

Variations in classifier using MLPs and
expert system identification have been
assessed, all with reasonable results (Ches-
more et al., 1998; Chesmore, 1997c, 1998c).

2. Results for Birds in Japan
During the author’s visit to Japan in March
1998, IBIS was tested on 10 species of bird

(Table 4) which occur in woodland and grass-
land in Japan. The same approach was em-
ployed but the classifier was a MLP with 784
inputs (as before), 40 neurons in the hidden
layer and 10 outputs (1 for each species).
Sounds for training were obtained from CD
(Kabaya and Matsuda, 19964, b, ¢) and results
were very encouraging. Table 5 gives the
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Table 5. Preliminary results for bird identification matrix. For ID code, see Table 4.

JBO1 JB02 JBO3 JB04 JB05 JB06 JBO7 JB0O8 JB0OS JB10O

JBO1 1 0 0 0 0 0 0 0 0 0
JB02 0 1 0 0 0 0 0 0 0 0
JB03 0 0 1 0 0 0 0 0 0 0
JB04 0 0 0 1 0 0 0 0 0 0
JB05 0 0 0 0 1 0 0 0 0 0
JB06 0 0 0 0 0 1 0 0 0 0
JBO7 0 0 0 0 0 0 1 0 0 0
JB0O8 0 0 0 0 0 0 0 1 0 0
JB09 0 0 0 0 0 0 0 0 1 0
JBI10O 0 0 0 0 0 0 0 0 0 1
A
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Fig. 5. Cuculus poliocephalus: A, Time domain waveform of the sound for training; B, Time domain
waveform under natural conditions (woodland); C, A-matrix for the sound for training; D, A-matrix
under natural conditions (woodland).
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results in the form of a confusion matrix. It is
evident that the recognition accuracy for
good quality sounds is 100% with no mis-
identification. The system was tested further
by extracting a single call of Cuculus polioce-
phalus from a woodland recording by Dr Oba
from the Natural History Museum and Insti-
tute, Chiba (CBM Acc. No. 043-0086) and
presenting this to the system. Fig. 5A shows
the time signal under good conditions, 5B the
time signal under natural conditions, 5C the
A-matrix for the bird under good conditions
and 5D the A-matrix for the bird under natu-
ral conditions. Under these conditions the
species was recognised with 86% accuracy.

Again, the research is still in its infancy
and much work needs to be done. One par-
ticular area of research which is considered
essential is to preserve the time structure of
the sounds since bird (and higher animals)
song is complex in both the time and fre-
quency domains. Work at Hull is currently
investigating the separation of individual
syllables and applying syntactic pattern rec-
ognition techniques.

Image Processing Applications

Image processing is the second major
sensor system for species identification. It is
possible to use monochrome or colour images
captured digitally, scanned from photo-
graphs or from scanning electron micro-
scopes. It is evident from Table 1 that the
range of applications is wider than for
bioacoustics as image processing is more
generic. For the purposes of this paper, it is
convenient to divide the applications into
species identification or discrimination and
morphological analysis of individuals within
populations.

Species identification research can be
further sub-divided into categories describ-
ing the final potential application such as
biodiversity assessment, discrimination be-
tween closely similar quarantine species,
agricultural applications, paleobiology and
paleobotany. Mention has already been
made about image-based insect counting
which aims to speed up sorting; other appli-
cations include identification of braconid
hymenoptera (Weeks et al., 1997; Weeks and
Gaston, 1997) and solitary bees by their wing

venation, leafhopper species (Dietrich and
Pooley, 1994), blue-green algae (Thiel, 1994)
and cyanobacteria. Discrimination of closely
similar species for quarantine purposes will
be described in detail later in the paper.
Agricultural applications have concentrated
on real-time identification of weed species for
herbicide placement, part of the concepts
of integrated crop management (ICM) and
integrated pest management (IPM). Recent
research has used fractals and Fourier analy-
sis (Critten, 1996) and colour chromaticity
(Shulin and Runtz, 1995). A related applica-
tion using spectral reflectance to discrimi-
nate between plants and soil is described in
Vrindts and De Baerdemaeker (1997). It
should be noted that the latter project does
not use image processing but near IR diffuse
spectral reflection. Paleobotany research has
been on identification of pollen from sedi-
ment cores in lakes to recreate environ-
mental histories (Langford et al., 1990); no
other research projects have been found to
date.

Morphological analysis (measurements)
using image processing is well established in
many fields such as biomedicine (e.g., X-ray
images) and engineering (e.g. robotics, fault
diagnosis) but less well so in biology and
even less in entomology. The main entomo-
logical applications are for Lepidoptera to
measure genetic influences on wing patterns,
for example Windig et al. (1994) used an
image processing system for quantifying
seasonal polyphenism in species of Bicyclus
butterflies.

Image Processing Applications at Hull

The image processing projects at Hull can
be divided into two categories—morpholog-
ical analysis of Lepidoptera and automatic
discrimination of closely similar species. All
the research has been carried out using
custom software written in Visual C for Win-
dows or Matlab. Matlab has the advantage of
simplicity in prototyping algorithms but is
interpreted and hence slow whereas C re-
quires a detailed knowledge of programming
but is very fast. Matlab also has a number of
toolboxes such as image processing and arti-
ficial neural networks which speed up the
development process. Images are derived
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Fig. 6.

from digital cameras attached to microscopes
or in the case of Lepidoptera directly from a
digital camera; live specimens can be photo-
graphed without harm using an elec-
troimmobilisation unit developed at Hull
(Chesmore and Monkman, 1994).

Morphological Analysis

Morphological analysis of Lepidoptera has
been attempted for a number of different
applications including analysis of variation
in British butterflies, quantitative analysis of
melanism in Biston betularia for industrial
melanism studies and analysis of the colour
morphs of Noctua pronuba. One future appli-
cation will be determination of fluctuating
asymmetry in Melanargia galathea, a species
of butterfly which occurs in sporadic popula-
tions in the Yorkshire Wolds not far from
Hull. The first 2 applications will be dis-
cussed in more detail.
Quantitative Analysis of Melanism. Mela-
nism is exhibited in a number of moth spe-
cies in several countries in the World. Britain
appears to have the highest number of spe-
cies, the most notable being the Peppered
moth, Biston betularia which has 2 common
forms—f. typica which has a white back-

Image processed Biston betularia {forewings.

ground and many black spots, and f. carbona-
ria which is entirely black. F.carbonaria was
thought to exist in very small proportions
prior to the industrial revolution in Britain
but became the predominant morph very
rapidly after the onset of the revolution. In
some heavy industrial localities such as
Manchester, the proportion of f. carbonaria
became 100% and remained so until the
1960's when a clean air act was introduced,
reducing smoke pollution dramatically.
Since then, the proportion of f. carbonaria has
reduced in most localities as lichens have
re-established. However, the traditional ex-
planation of selective predation due to the
light form being visible on dark, smoke
covered tree trunks and hence being eaten,
has some problems. In America, the same
increases and decreases of a very closely re-
lated species have followed the same trend as
in Britain but without the loss of any lichens.
Also, B. betularia has an intermediate form, f.
insularia, which is thought to be continuous-
ly variable between the 2 extremes. In addi-
tion, in 1 study in Helsinki using 2 closely
related moth species (Oligia latruncula and O.
strigilis) has further confused the situation in
that O. strigilis has increased in melanic pro-
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Fig. 7. Example of continuous variation in Biston betularia.

portions while O. latruncula has decreased
over the same period. Image processing has
been used to measure the proportions of
black and white in a forewing of B. betularia
in order to quantify the amount of melanism
(Chesmore and Yorke, 1997a,b; Chesmore,
1998a). This is achieved by detecting the
wing edge, using thresholding to discrimi-
nate between the white and black pixels and
then counting the number of black pixels.
The result is normalised against wing area
and expressed as a percentage. Fig. 6 shows
2 wings, 1 of each form, processed in this
manner, together with estimates of “black-
ness”. Fig. 7 shows how it is possible to give
more detail using this technique instead of
classifying “normal” or “melanic” (includes f.
nsularia). Research is ongoing and it is
hoped that more extensive trials will take
place in 1999.

Analysis of Noctua pronuba Forms. This
moth is extremely common in Britain and
can be a pest in gardens. It exhibits up to 7
named colour forms and is sexually dimor-
phic. Because of this and it’s abundance, it
was chosen as a test subject for image analy-
sis with an emphasis on colour discrimina-
tion of forms. In Yorkshire only 4 forms are
commonly found; these are f. ochrea (female),
f. rufa (female), f. innuba (male) and f. ochrea-

brunnea (male), with the last being the com-
monest recorded at the trapping site (using a
low power ultraviolet light trap). Images of
detached forewings were obtained using a
JVC colour CCD camera and digitised with a
frame grabber installed in a Pentium com-
puter. Each image was digitised to 272 X320
pixels, 24-bit colour. Each wing was digitised
with a blue background which provided a
strong contrasting colour to the wings and
could be removed by simple thresholding of
the blue image. In 1 study 58 features were
extracted from each wing image, including
mean, median, mode, standard deviation,
Kurtosis, energy and entropy of the green
(G), red (R) and blue (B) channels, R-G, B-G,
R-B covariance and correlation, moments
and edge densities (Chesmore et al., 1996).
This number was reduced to 16 features
describing each wing by considering the
ranges of variability of the parameters and
rejecting those with very small variability.
The methods included principal components
analysis, cluster analysis and unsupervised
neural networks. In cluster analysis and
neural networks, 5 clusters were selected to
correspond to the 4 forms and a fifth as a
“catch-all”. Different colour forms can be
distinguished successfully, f. ochrea being
almost always classified perfectly. It should
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also be noted that some entomologists con-
sider several of the forms as continuously
variable and the named forms are extremes;
this is borne out to some degree in these
results since in most cases, f. ochreabrunnea is
spread across several groups.

Automatic Discrimination of Closely
Similar Species

This research is more recent than previous-
ly described work and there are fewer results.
The two projects under way are both related
to the early detection of quarantine species
which are considered to be too dangerous (in
terms of economy) to be allowed into Britain.
The work is in association with Central Sci-
ence Laboratory (CSL) located near York and
one of its roles is to examine consignments of
plants for import to assess the presence of
pests. It is important to be able to detect the
presence of pests as early and accurately as
possible and this is carried out manually by
experts. The taxa selected for the projects
are Liriomyza spp (Diptera: Agromyzidae), a
leafminer and Colletotricrichum spp, a fungus
causing strawberry black spot.
Detection of Liriomyza spp. Liriomyza tri-
folit is an established pest in Britain on vari-
ous horticultural crops such as tomato and
chrysanthemum whereas L. huidobrensis is a
quarantine pest and cannot be allowed into

the country. It is therefore important to pro-
vide rapid and accurate identification, allow-
ing for more specific targetting of pesticides
and other control and eradication measures,
minimising environmental damage, prevent-
ing further infestation and saving money.
Identification is important but time consum-
ing, often requiring identification of the
larvae or waiting until they become adults.
Image processing of the leaf mines may pro-
vide a solution. The ongoing project (Pether,
1998) is investigating whether it is possible
to discriminate mines from each species; this
is complicated by the fact that both species
are polyphagous and the mine character is
dependent on hostplant species. Fig. 8A
shows a typical leaf mine and Fig. 8B shows
how it is possible to discriminate between the
leaf and mine using simple edge detection.

Discrimination between C. acutatum and C.
gloeosporioides. C. acutatum is an EC listed
quarantine organism and is separated from
C. gloeosporioides in part by examination of
conidia which are morphologically similar.
One of the key characters used is the shape of
the spore’s apex—described as acute for C.
acutatum and obtuse for C. gloeosporioides.
The aim of the project was to ascertain if
image analysis could quantify this difference
and reliably separate these species. Images
were obtained from CSL and were derived

Fig. 8. Chrysanthemum: A, Leaf with leafl mine; B, Image processed leaf showing mine.
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from microscope slides at 400 times magni-
fication, digitised using a three chip colour
camera (JVC-TK 1270E) and captured with a
Snapper 24 frame grabber using computer
software from Optimas (Seattle, USA). Ini-
tially, analysis was performed using Optimas
(version 5.2) at CSL. Length (principal axis),
breadth (minor axis) and area of conidia were
measured and the data exported to Microsoft
Excel where the area bounding the spore
(length X breadth) and the area/bounding
area were calculated. Images were then ana-
lysed using Matlab at Hull. A theoretical
ellipse was generated from the principal and
minor axes and then compared with the
actual spore contour (outline). Secondly, the
principal and minor axes were used to sepa-
rate each spore into 4 segments and individ-
ual areas calculated. These were placed in a
vector and multiplied by the Hadamard
matrix to calculate the Hadamard-Walsh
spectrum of the spore shape (related to sym-
metry properties). Results showed that there
was a statistically significant difference
between C. acutatum and C. gloeosporioides
for the area/bounding area for conidial line
drawings. Although, a similar trend was
obtained for conidia from cultures it was not
statistically significant. Comparison of
spores with a theoretical ellipse failed to
separate species reliably. The Hadamard
function, however, showed greater promise.
The vertical component for C. acutatum
ranged from 1-2 whilst for C. gloeosporioides
it was between 0-1, showing reasonable dis-
crimination (Lane et al., 1998).

Conclusions

The paper has given a brief outline of com-
puter-aided taxonomy, concentrating on au-
tomated species identification. It is evident
that there are many possible applications for
automatic identification, perhaps the most
important being the development of more
rapid biodiversity assessment methods.
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