
千葉県立現代産業科学館見学ワークシート

歴史から見えてくること
そして未来へ繋げること

予定

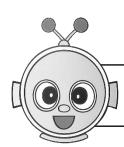
時間	場所	すること
:		
:		
•		
:		
:		
:		
:		

	 	 	 	 _
	 	 	 	 -
	 	 	 	 -
	 	 	 	 _

千葉県立

館は、

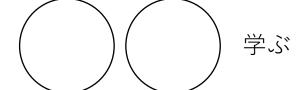
市にあります。みんなの周りにかくれて

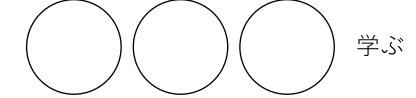

いる「科学の不思議」を紹介しています。

たくさんの不思議を見つけて帰って下さいね。

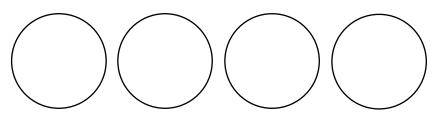
千葉県のどこにある のか探してみましょ う。見つけたらその 場所に色をぬってね。

科学館の中は どうなってるいるのかな?

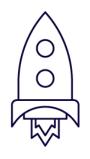

科学館は3つの展示場に分かれています。



科学館には3つの勉強の方法があります。

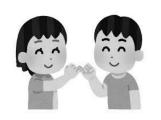


学ぶ


科学館でできることもたくさんあります。

科学の不思議がいっぱいの実験を 見ることができます。

電車や車の秘密を見つけることができます。


科学の不思議を使ってロケットを 飛ばすことができます。

パソコンなどを使って音やリズムを 楽しむことができます。

身体を使って電気を作ることが できます。

科学館を 楽しむためには きまりをきちんと守りましょう。

帰入

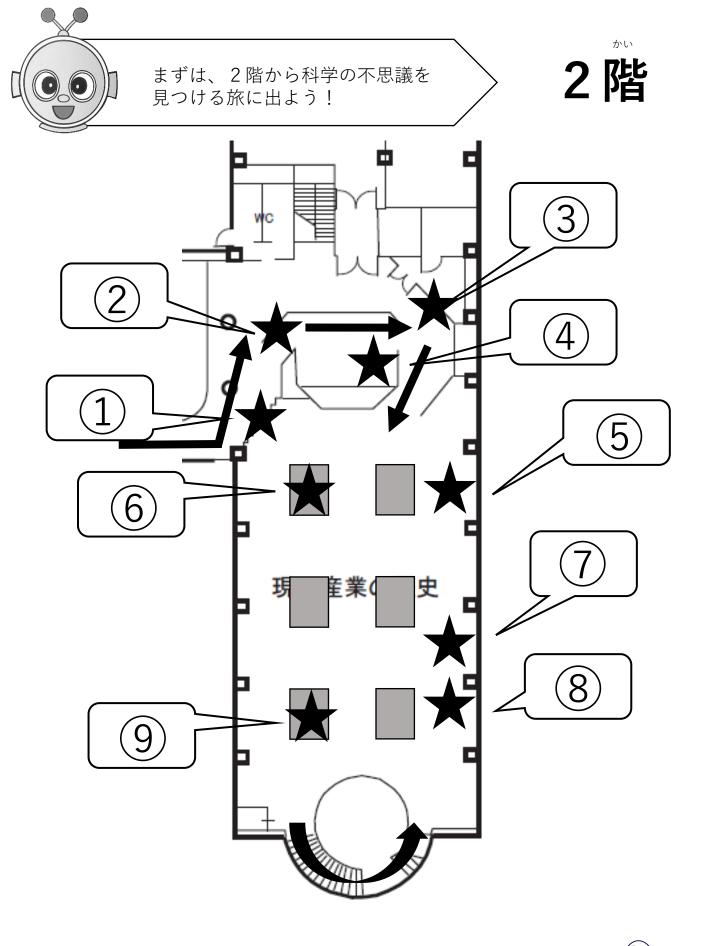
るる

前前

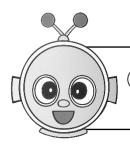
にに

☆あいさつをしましょう。

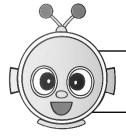
☆落とし物ゃ忘れ物がないか


もういちど確認しましょう。

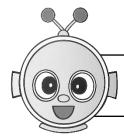
☆ () 声は出しません。


科学館の中で ☆書く道具は () しか 使いません。

みんなの安全を守るための大切なきまりです。

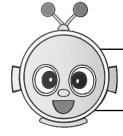

① 鉄や電気、石油を表現した 作品

機械を作る時などに使う部品の形を使った作品です。 何に使われる部品でしょうか?想像してみましょう。


② エッフェル塔の模型

使われている鉄の種類は何ですか。

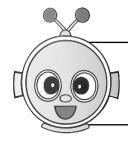
炭素をほとんど含まない、ねばり気のある鉄 のことをいいます。詳しく解説している展示が あるので、探してみてください。


③ アクアラインの一番

アクアラインには一位のものが2つあります。

- ① アクアブリッジは**日本一**長い です。
- ② アクアトンネルは世界一長い

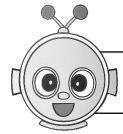
----- です。


④ 説明パネルと映像

けいようこうぎょうちいき

千葉県の京葉工業地域に集まっている産業は何でしょう。 2つ見つけましょう。

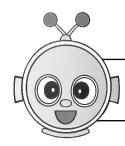
- ① 装置型 工業



⑤ 発電所の種類

発電所では、様々な方法で電気が作られています。 電気がどのように作られているのかわかりましたか。

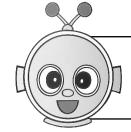
※ちなみに、首都圏の電力の多くは○○発電で作られています。


6 外国の発電所

海外では、日本に比べると早くから発電所が作られてい ましたが、中でもデッドフォード発電所は世界で初めて がいきぼこうりゅうかりょくはつでんしょ の大規模交流火力発電所です。

- 1) デッドフォード発電所を作った人はだれですか?
- 2) 発電機は何台使われていましたか?
- 3) 模型はどこの博物館にあるものをもとに作られていま すか?

(10)


1⑦ 石油コンビナート

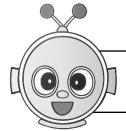
も けい

石油コンビナートの模型を見てみましょう。大型タンカー(船)によって運ばれた原油は、どのような道を 辿っていくのでしょうか。解説文からまとめましょう。

⑧ 鉄の原料

鉄の原料は工場で処理され、高炉に入れられ

ます。高炉では**1300℃~1400℃**の熱風が送られ、とけた ^{せんてっ} 銑鉄ができます。鉄の主な原料はなんでしょう?


1																											
	_	 _	_	_	_	 	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-

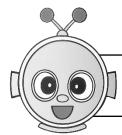
2

③

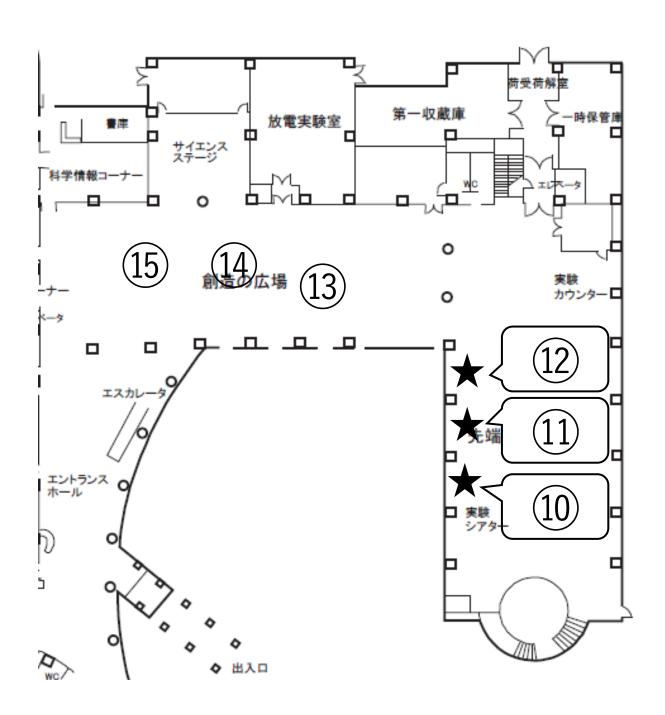
鉄鉄とは、3~4%の炭素といくつかの不純物 をふくんだ硬くてもろい鉄のことです。

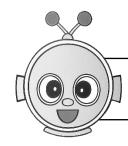
9 ベッセマー転炉

船や建物に使われる鋼鉄を大量に生産 できるようになった発明がこの転炉です。

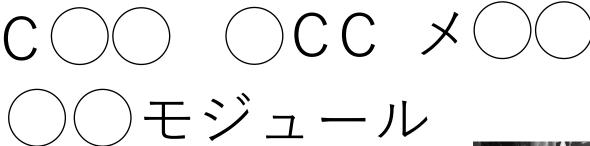

ベッセマーのおかげで鋼鉄の値段が安くなりました。

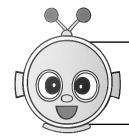
ベッセマー転炉のしくみをまとめましょう。


鋼鉄とは、2%未満の炭素をふくみ強く硬くし たもののことです。私たちの身の回りにあふれ ている「鉄」とよばれるものの多くは、この、 鋼鉄のことを指しています。



1階には科学の不思議がたくさんかくれているよ。 体験しながら「?」を「!」にして帰ってね。





10 エレクトロニクス

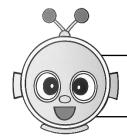
大量の計算を高速で行うスーパーコンピュータの中には、 人間の頭脳のような働きをする『システムボード』が 入っています。『システムボード』は、どのようなもの が集まってできていますか。

① スペースシャトルと新素材

打ち上げ時や地球へ帰還する時など、かなりの高温 (1250℃以上)になるスペースシャトルには、多く

の新素材が使用されています。

1250℃以上となるスペースシャトルの上の部分には


() が使用された (

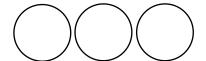
タイル)

低温のところには

)で焼き固めた(

タイル)

② バイオミメティクス

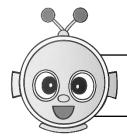

生物の機能や形などを研究し、ものづくりに生かすことをバイオミメティクス(生物模倣技術)といいます。ここでは、5種類の例を紹介しています。

000のとげ

→ しっかりくっついて簡単に 。はがせるテープ

蚊の針

→ 痛みをやわらげた(

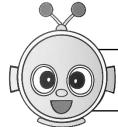

()()()のはばたき

→ 飛行ロボット

モルフォチョウの構造色 → キラキラと色が変わる()

()()の葉のロータス効果

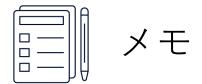
→水をはじくカサ、など



③ 無限の部屋

鏡が3枚になるとなぜこのようなことが起こるのでしょうか。理由を予想してみましょう。

⑭ 水のおどり


つまみを回してみましょう。水面にたくさんの波もようが出来たり、水が吹き上がったりします。なぜこのようなことが起こるのでしょうか。理由を予想してみましょう。

右手と左手で決まった金属に触れると、自分の身体が
電池になります。なぜこのようなことが起こるので
しょうか。理由を予想してみましょう。

-	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	-	_	-	_	_	_	-	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	-	_	_	_	_
-	-	-	-	_	-	-	-	-	-	-	_	_	_	_	_	-	_	-	-	_	-	_	_	_	-	-	_	_	_
-	-	-	-	-	-	-	-	-	-	-	_	_	_	_	_	-	_	-	-	-	-	-	-	_	-	-	_	_	-
-	-	-	-	_	-	-	-	_	_	-	_	_	_	_	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_
-	-	-	-	_	-	-	-	_	_	-	-	-	-	-	_	-	_	-	_	_	-	_	_	_	_	_	_	_	_
-	-	-	_	_	-	-	-	_	-	-	-	-	-	_	_	-	-	-	_	_	_	_	_	_	_	_	_	_	_
-	-	-	-	_	-	-	-	-	-	-	-	-	-	_	-	-	_	-	-	_	-	_	_	_	-	-	_	_	_

(18)

_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_				_					_		_	_			_	_	_		_	_	_	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
	_	_	_	-	_	_	_	_	_	_	_		_	_				_	_	_	_	_	_	_	_	_	_	_	_
-	_	_	_	-	-	_	_	-	-	_	_	_	-	-	-	_	-	_	_	_	_	_	-	-	-	-	_	_	_
_	_	_		-	_	_	_	_	-	_	-	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

身の回りの出来事や社会で起きていることを科学と 結びつけて考えてみましょう。意外とみんなの周り には科学があふれているんですよ。

